The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

Gianluca Rizzo
HES SO Valais, Switzerland

Balaji Rengarajan
Accelera, USA

Marco Ajmone Marsan
Politecnico di Torino and Institute IMDEA Networks
What is the value of sleep modes for mobile network operators?

• SM essential for achieving network energy proportionality
 – theoretical savings of up to 40-60%

• Practical issues:
 – Legacy BS: slow dynamics
 – SM shorten their average lifetime
 – Flexible BS: Switching up speed vs standby energy tradeoff erodes gains
 – Uncertainty in traffic demand forecast

• What is the optimal ratio of BS which should be replaced with flexible BS?
System Model

Users, BS ~ Homogeneous PPP
- Density is a function of time
- Forecasted user density: Gaussian, with known mean

Time is divided into **periods** and **slots** (within a period)

Two types of base stations:
- **Static**: They can only be on or off;
- **Flexible**: They also access a low power standby state.

A BS can transition from/to the off state only at the beginning of each period (**slow sleep modes**)
The transition from (to) the standby state can happen at the beginning of each slot (**fast sleep modes**)

Period: No off->on transitions

Slots: Flexible BSs can sleep/wake up
A method for the derivation of the energy optimal BS density

- QoS parameter: expected per-bit delay

\[
\bar{\tau}(\lambda_b, \lambda_u) = \int_0^\infty \left(\int_0^\infty \int_0^{2\pi} e^{-\lambda_b A(r, x, \theta)} \lambda_u x \, d\theta \, dx \right) \frac{e^{-\lambda_b \pi r^2} \lambda_b 2\pi r}{C(r)} \, dr
\]

- The energy consumed by a BS with utilization \(U \) is

\[p_{on} + q_{on} U. \]

- The energy optimal BS density is obtained by solving

\[
\begin{align*}
\text{minimize} & \quad \lambda_b \left(p_{on} + q_{on} \frac{\bar{\tau}(\lambda_b, \lambda_u)}{\bar{\tau}_0} \right) \\
\text{subject to} & \quad \bar{\tau}(\lambda_b, \lambda_u) \leq \bar{\tau}_0
\end{align*}
\]
Derivation of the optimal coordinated sleep modes strategy

• We assume BSs are turned on/off independently
 – Sleep mode univocally identified by BS density

• **At each period**: we compute the energy optimal total density of BS satisfying the QoS constraints, with a probability p_{th}
 – For the peak user density, this corresponds to the max total n of BS
 – All BS in excess are turned off, starting from legacy BSs.

• **In each slot**: we determine the optimal density of flexible BS, based on the value taken by user density in that slot
 – All flexible BS in excess are put into standby mode.
Numerical evaluation

- Duration of each period: 3h
 - Max consumed power: 1500 W
 - Idle power consumption: 60% of max
 - Standby power consumption: 30% of max
 - $\tau_0 = 10^{-5}$, $p_{th} = 2\%$
Flexibility allows reducing the energy costs of uncertainty in traffic forecasts.

- Uncertainty affects also the total number of active BS.
Combining slow and fast sleep modes enables the highest energy gains

- Fast sleep modes increase EE by at most 12%
Combining slow and fast sleep modes enables the highest energy gains.

- Need of an accurate evaluation of impact of slow sleep modes on capex and opex to determine the most efficient solution.
No need to speed up «slow» sleep modes

- Modest increase in energy efficiency
- Capex/Opex of networks with slow sleep modes increase with frequency of power on/off events
No need to speed up «slow» sleep modes

- Majority of BS are turned off once per day: modest impact of on off costs
Conclusions

• We provide a tool for estimating maximum achievable energy savings for a given % of flexible BS
 – Assuming a given QoS target is always met
• We estimate the cost of uncertainty in traffic predictions
• Our results enable CAPEX/OPEX analysis to determine optimal deployment strategies.
Future work

Evaluate the impact of

• different energy models

• different traffic mix, with different requirements
 – Project with predicted evolution of wireless traffic

Capex/Opex study

• (include maintenance costs, projected energy costs, renewables, etc)
Thanks!