

Palermo, July 5th 2012

Demand forecasting and smart devices as building blocks for smart micro grids

René Schumann and Dominique Genoud HES-SO//Valais Switzerland Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz University of Applied Sciences Western Switzerland

Outline

- Smart grids and the IoT
- Smart devices
- Forecasting & Coordination
- Experimentation set-up
- Evaluation
- Conclusion

Smart grids and the IoT: Electric Smart-grid : micro-grid approach

The necessity of Load balancing of the microgrids

Hess-soo Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz University of Applied Sciences Western Switzerland

Smart grids and the IoT: Legacy devices in building Automation

Inside the house Smart devices

- What makes a device smart?
 - Can control its consumption
 - Can communicate with other devices
 - Is collaborative to achieve a common goal
- Smart devices build up smart grids

Hesseson Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz University of Applied Sciences Western Switzerland

Context of the paper

 Use simulation and mathematical modeling to understand better the mix of smart devices in a smartgrid

• Use the simultion results as input parameters of a true microgrid to help the regulation

Coordination of smart devices

• Production and consumption should be locally coordinated to avoid external costs.

- Initial plan for the microgrid is generated randomly and we have:
 - Constant demanding devices
 - peak-loading device

Coordination of smart devices

Idea: smart devices can shift their peaks to reduce costs

- Respects, e.g.
 - Number of peaks
 - Minimal distance between peaks

Experimental set-up

- Scenario: 4 peak consumers, 3 constant consumers, 1 peak producer
- Initial peak distribution is random (respecting minimal and maximal distance of peaks, and total number of peaks)
- The devices communicate with a coordinator that gives back information to the devices
- The devices collaborate to achieve a gobal goal

Experimental set-up

• Cost function for a time interval [s,e]:

$$\begin{aligned} \mathbf{Definition \ 1} \ \ cost(s, e, d_0) &= \sum_{t=s}^{t=e} c(l(d_0(t))) \\ c(l(d_0(t))) &= \begin{cases} \mathsf{buyprice}_t * l(d_0(t)) & l(d_0(t)) > 0 \\ \mathsf{sellprice}_t * l(d_0(t)) & l(d_0(t)) < 0 \end{cases} \end{aligned}$$

- Very conservative prices:
 - Buying energy from provider: 0.2/unit
 - Selling energy to provider : 0.05/unit
- Simulation on 100 units of time

Evaluation I

What are the effects of a varying number of smart devices?

	С	c+p	2 sc	4 sc	4sc+sp
Mean	1475,7	1119,5	1117,0	1114,6	1090,0
std. dev.	25,4	71,0	71,0	71,0	80,4

c: consumers, p: producer,

sc: smart consumers, sp: smart producer

 \rightarrow Decrease the costs when local production and smarter

ightarrow The smart devices cannot operate fully with this setup

Adding Forecasting

- Different approaches exist:
 - Large grids: ARIMA method : linear time series, possible if a large number of consumers, remove the non linear effect of each device
 - Micro grids : actually based on neural nets or hybrid methods
- Our approach :
 - We extract usage patterns for electricity out of load curves by using classifiers that extract the load curve of one device using single signature and the global signature.
 - We also collect usage information of smart devices

Evaluation II

- Results not differ from first set because:
 - Assuming random peaks for devices is not realistic
 - Assuming only short term adaptation of the consumption and the production is very constraining for the forecasting
- However the simulation system is now ready and we should have better results with a more realistic setup (extracted from real data)

Conclusion

- Introducing smart devices into existing grids have a positive impact to reduce costs
- Introducing smart producer helps to reduce costs but make it more sensitive to the diverse consumers and to the load plan (increase of the StdDev)
- More work needs to be done, e.g.
 - Bigger scenarios
 - Better coordination schemes
 - Long term forecasting

Conclusion 2: part of a bigger picture using data to predict consumption

Low frequency parameters (load curves)

High frequency parameters(device mesures)

Energy predictions (meteo, long term climate stats

Conclusion 3: taking advantage of IPv6

- One unified framework where all non ip devices can discuss inside an holisitic IPv6 network.
- Service oriented information system
- Legacy Device as a Service \rightarrow LDaaS
- Thanks all the partners IoT6

Questions?

Contact René Schumann (rene.schumann@hevs.ch) Dominique Genoud (dominique.genoud@hevs.ch)

