A computerized score for the automated differentiation of usual interstitial pneumonia from regional volumetric texture analysis

Adrien Depeursinge, Anne S. Chin, Ann N. Leung, Glenn Rosen, Daniel L. Rubin

Prof. Dr. Adrien Depeursinge
University of Applied Sciences Western Switzerland Sierre (HES-SO)
adrien.depeursinge@hevs.ch
Idiopathic pulmonary fibrosis (IPF)

• Most **common** type of interstitial lung disease (ILD)
• Confounding diagnoses of ILDs: >150!
 – Sarcoidosis, non-specific interstitial pneumonia, ...
• **Multidisciplinary** approach between experts in pulmonology, chest radiology and pathology [1]

• Often requires a surgical **biopsy**
 – Costly, invasive and risky:
 • **Hemorrhage, lung collapse**
 • **Acute exacerbation of the lungs** [2]

Radiology: usual interstitial pneumonia (UIP)

- Lung biopsy can be obviated when the clinical and radiographic (CT) impression are clearly suggestive of UIP [1]

<table>
<thead>
<tr>
<th>Classic UIP (all required)</th>
<th>Inconsistent with UIP (any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral, basal predominance</td>
<td>Upper or mid–lung predominance</td>
</tr>
<tr>
<td>Reticular abnormality</td>
<td>Peribronchovascular predominance</td>
</tr>
<tr>
<td>Honeycombing with or without traction bronchiectasis</td>
<td>Extensive ground glass abnormality (extent > reticular abnormality)</td>
</tr>
<tr>
<td>Absence of features listed as inconsistent with UIP pattern</td>
<td>Profuse micronodules (bilateral, predominantly upper lobes)</td>
</tr>
</tbody>
</table>

A) tissue type

- normal
- ground glass
- reticular
- honeycombing

B) tissue location

- peripheral
- basal

Objectives and experimental setup

• **Computer-aided diagnosis for identifying classic UIPs:**
 – No biopsy required for them!

• Derive a score from regional volumetric texture analysis
 – 3-D texture analysis
 – Basic anatomical atlas

• **33 patients with biopsy proven IPF**

• Volumetric multiple detector CT (MDCT)
 – Acquired within the year of the biopsy

• Gold standard: consensus of two thoracic radiologists with more than 15 years of experience with ILDs
 – 15 patients with classic UIP versus 18 patients with atypical UIP
Simple 3-D digital atlas of the lungs

- The lungs are split perpendicularly to 4 axes [3]

<table>
<thead>
<tr>
<th>⊥ vertical</th>
<th>⊥ axial</th>
<th>⊥ coronal</th>
<th>⊥ sagittal</th>
</tr>
</thead>
<tbody>
<tr>
<td>apical, central, basal</td>
<td>peripheral, middle, axial</td>
<td>left, right</td>
<td>anterior, posterior</td>
</tr>
</tbody>
</table>

Intersections: 36 subregions

Regional features and score

- **Texture**: 3-D Riesz filters [4]
 - quantify the local amount of directional image patterns at multiple scales:

- **Intensity** hist. in \([-1000; 600]\) Hounsfield Units
 - 15 hist. bins

- **Feature aggregation and score** \(f(v_i)\):

 \[
 f(v_i) = \langle w, v_i \rangle + b
 \]

 - \(f(v_i) > 0\): classic UIP
 - \(f(v_i) < 0\): atypical UIP

Results and discussion

- **ROC analysis** of the score and **comparison** with two fellows

- Importance of **regional volumetric texture analysis**
- Performance is **comparable** to cardiothoracic fellows (1 year spec.)

- **Demonstrate the potential benefits of our approach in centers without access to ILD experts to avoid unnecessary biopsies**

- **Limitations:** 33 cases and requires a volumetric CT
Results and discussion

• Optimization of SVMs: 3-D Riesz

- The performance is stable and generalizes well.