3D Riesz–wavelet Based Covariance Descriptors for Texture Classification of Lung Nodule Tissue in CT

SaAT6.6
August 29th, 2015
Motivation + Contribution

- **(Statistical)** feature extraction and representation
- Dictionary **modelling of lung/nodule** tissue areas
- **Classification** of lung nodule areas
 (solid / ground glass opacity -GGO / healthy)
Motivation + Contribution

- (Statistical) feature extraction and representation
- Dictionary **modelling of lung/nodule** tissue areas
- **Classification** of lung nodule areas
 (solid / ground glass opacity -GGO / healthy)

Goal and application

Supervised learning of region classes from **texture**
Robustness to size and shape **variations**
Applications: **tissue modelling**, classification, segmentation
Related work

Clinical domain

- 3D visualization and annotation software
- Manual delineation with expertise of clinicians
Related work

Clinical domain
- 3D visualization and annotation software
- Manual delineation with expertise of clinicians

Computer vision + Machine Learning domain
- 3D features: Riesz transform, 1st and 2nd order visual cues
- 3D descriptors: MCOV, 3D-SIFT, SHOT, THRIFT...
- Linear/non-linear (un)supervised classification methods: CNN, Kernel-SVMs, Sparse coding, Bag-of-visual features...
Intuition - features

Riesz-wavelet transform as texture features

Figure 1: Lung nodule CT slice with corresponding Riesz filter responses

1A. Depeursinge et al., ”Lung Texture Classification Using Locally–Oriented Riesz Components”, in MICCAI 2011
Intuition - feature representation (in 3D)

3D Riesz-covariance models

Figure 2: 3D CT volume and associated Riesz-covariance descriptor
3D Riesz-Covariance descriptors

\[
\Phi(ct, v) = \{ \phi_{x,y,z}, \forall x, y, z \in v \} \quad (1)
\]

\[\phi_{x,y,z} = \left(R_{x,y,z}^{(n_1,n_2,n_3)}, \|R\|_{x,y,z, ct_{x,y,z}} \right) \quad (2)\]

\[
RieszCov(\Phi(ct, v)) = \frac{1}{N-1} \sum_{i=1}^{N} (\phi_{x,y,z} - \mu_{\phi}) (\phi_{x,y,z} - \mu_{\phi})^T \quad (3)
\]
Covariance model benefits

- Common framework for statistical data modelling.
- Features \equiv samples of n–dim joint distributions.
- Second order moment statistics ($n \times n$ covariance matrices).
- Covariances manifold (Sym_d^+) \Rightarrow analytical modelling Riemannian space ported machine learning techniques.
Covariance descriptors - Sym_d^+ Riemannian space

\[x = \log_Y(X) = Y^{\frac{1}{2}} \log \left(Y^{-\frac{1}{2}} XY^{-\frac{1}{2}} \right) Y^{\frac{1}{2}} \] (4)

\[\hat{x} = \text{vect}(x) = (x_{1,1}, x_{1,2}, \ldots, x_{1,d}, x_{2,2}, x_{2,3}, \ldots, x_{d,d}) \] (5)

\[\delta(X, Y) = \sqrt{\text{Trace} \left(\log \left(X^{-\frac{1}{2}} YX^{-\frac{1}{2}} \right) \right)} \] (6)
Data gathering

Ground-truth:

- 95 patients (from Stanford Hospital and Clinics)
- Biopsy-proven early stage non-small cell lung carcinoma
- Nodule regions delineated in CTs by clinicians
- Processing with MATLAB software: isotropic voxels of 0.8 mm³
Data samples

GGO vs. Solid lung nodule tissue components (vs. healthy lung)

Figure 3: Lung nodule Riesz filter responses - GGO component

Figure 4: Lung nodule Riesz filter responses - solid component
Bag-of-covariances

Standard bag-of-visual features paradigm.
Sub-sampling of partial class regions for a complete dictionary modelling
Bag-of-covariances

- Dictionary $D \equiv \hat{x}^c_{v,p} = \text{vect}(\log_I (\text{RieszCov}_v^C, P))$
- Training set: modelling frequencies of words in D

Classification decision: $\text{class}(ct) = \arg\min_i D(h_{ct}, h_i)$
Experimental setup

Data sets:
- 35 patients for model learning, 60 for test set.
- 60 words per class (dictionary size, $3 \times 60 \times 35 = 3600$)
- 10-fold cross-validation.

Quantitative evaluation w.r.t. ground-truth:
- Avg. sensitivity (TP / TP+FN) = 82.2%
- Avg. specificity (TN / TN+FP) = 86.2%
Conclusions

- Computer vision and Machine Learning to the service of medical knowledge
- Statistical design for a robust solution
- Easily extendible framework
Future work

- More patients and bigger data collection
- Different modelling contexts for concrete problems
- Exploit the covariance-based descriptor space for different Machine Learning techniques (clustering, classification, regression...)
Thanks for your attention

Questions?

3D Riesz–wavelet Based Covariance Descriptors for Texture Classification of Lung Nodule Tissue in CT
SaAT6.6

Pol Cirujeda, UPF
EMBC 2015, August 29th 2015