

How to Detect soft falls

Prof. Dr. Dominique Genoud Institute of Information Systems Dominique.Genoud@hevs.ch Techno-Pôle 3 – CH-3960 Sierre Switzerland

Vincent Cuendet master HES-SO, Lausanne, Switzerland

Julien Torrent FST, Neuchâtel,Switzerland

Processing flow

Connected android watches

Moto 360 and LG-G watches

Name	e Format Possible values		Туре	
Fall type	Alphanumeric, 2 symbols	B1, B2, B3, M1, M2, M3, NO, FR	Category	
Subject	Alphabetic, 2 characters	AA, BA, BO, FA, GU, KU, LA ; NI, PI, TO, TR, UN, VA	Category	
Age	Numeric, 2 digits [22, 93]		Continuous	
Sex	Alphabetic, 1 character	F, M	Category	
Auxiliary mean	Alphanumeric, 2	00, CA, DR, DS	Category	
Linear acceleration, X axis.	Numeric	[-34.86532974243164, 33.24461364746094]	Continuous	
Linear acceleration, Y axis.	Numeric	[-44.05729675292969, 42.206565856933594]	Continuous	
Linear acceleration, Z axis.	Numeric	[-29.68331527709961, 35.54317855834961]	Continuous	
Acceleration, X axis	Numeric	[0,0]	Continuous	
Acceleration, Y axis	Numeric	[-39.08319854736328, 39.369998931884766]	Continuous	
Acceleration, X axis	Numeric	[-38.91899871826172, 39.82899856567383]	Continuous	
Gyroscope, X axis	Numeric	[-38.91109848022461, 39.54209899902344]	Continuous	
Gyroscope, Y axis	Numeric	[-39.08319854736328, 39.369998931884766]	Continuous	
Gyroscope, Z axis	Numeric	[-13.002599716186523, 14.506699562072754]	Continuous	

Use the magnitude of 3D vector

Falls

Soft falls

1% detection with thresholds

 $\pi \approx \& \Sigma$ Institute of Information Systems

Normal activity

Soft fall

Signal processing to find patterns

• Decomposition of a temporal signal:

In the digital word : Discrete Fourrier Transform (DFT)

- Jwave.jar:
 - open source library developed by C.
 Scheiblich (MIT)
- The source code and examples are available there:
 - https://github.com/cscheiblich/JWave
- License free :

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

Other polular pattern detection

Wavelet transform :
 <u>https://en.wikipedia.org/wiki/Wavelet_transform</u>

Knime to perform Wavelets

• Implemented in the jwave.jar library:

Knime to perform Wavelets

Processing flow

Classification experiments

			eperties Flow	Variables	
Table "default" - Rov	vs: 4 Spec	- Columns: 5 Pr	D Area U	D SE	D Interval 0.076
Row ID	104	60	0.732 0.839	0.03	0.059
0_dte300	104 104	60	0.735	0.039	0.067
0_mlp1_15	104	60	Area U.	D SE	D Interval
Row ID	10	60	0.637	0.044	0.086
0 0 dte300	104	60	0.868 Properties Flow	Variables	
Table "default" - R	ows: 4 Spe	c - Columns: 5	D Area U	. D SE 0.045	0.089
Row ID	104	60 60	0.861	0.028	0.078
0_dte300 0_knn50	104	60 60	0.616	0.044	0.00
0_mlp1_15	10.				

Compute ROC Curve Standard Error

Preprocessing	Predictor	AUC	precision	
	Decision Tree Ensemble	0.84	±0.03	
FFT 8 coefficients	Mulltilayer Perceptron	0.79	±0.03	
	Decision Tree Ensemble	0.87	±0.03	
Wavelets Haare	K Nearest Neibourghs	0.75	±0.04	
	Decision Tree Ensemble	0.86	±0.03	
Daubechie 128 coefficients	K Nearest Neibourghs	0.73	±0.04	

Full dataset: 500 soft falls and 1500 normal activities

Stratified Subset of 20% of the original data

Scoring and precision of AUC

How good are the Decision Tree Ensemble

FWT write

F	ile						
1	"able "default" - Ro	ws: 4 Spec - (Columns: 5 Pr	operties	Flow Variat	oles	
	Row ID	0	+ 1	D Area	a U D	SE D Int	terval
	0	104	60	0.685	0.0	41 0.081	
\langle	0_dte300	104	60	0.847	0.03	29 0.058	
	0_knn50	104	60	0.721	0.0	39 0.077	
	0_mlp1_15	104	60	0.674	0.04	42 0.082	

Processing flow

Implementation on Android

Enhancements

- Pmml to java compiler
- Wrapped nodes
- Optimize the size of the pmml in memory

References

- The example workflows will be available
- Paper on soft falls

SOFT FALL DETECTION USING MACHINE LEARNING in WEARABLE DEVICES

Dominique Genoud, Vincent Cuendet Institute of Information Systems, University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland Email: dominique.genout@hes-so.ch/vincent.cuendet@alumni.hes-so.ch Julien Torrent FST, Fondation Suisse pour les Téléthèses Neuchâtel, Switzerland Email: torrent@fst.ch

The 30th IEEE International Conference on Advanced Information Networking and Applications (AINA-2016) Le Régent Congress Centre, Crans-Montana, Switzerland, March 23-25, 2016

Questions?

