Numerical Study of Tip Vortex Cavitation

SHF Workshop: Hydraulic Machinery, Cavitation.
3-4 June 2015, Nantes (CETIM), France

Dr. Jean Decaix* and Pr. Cécile Münch, Univ. of Applied Sciences and Arts - Western Switzerland Valais, Sion, Switzerland
Pr. Guillaume Balarac, Univ. Grenoble Alpes, LEGI, CNRS, F38000, Grenoble, France
Dr. Matthieu Dreyer and Pr. Mohamed Farhat, Ecole Polytechnique Fédérale de Lausanne, Laboratory for Hydraulic Machines, Lausanne, Switzerland

*jean.decaix@hevs.ch
CONTENTS

1. CONTEXT
2. OBJECTIVES
3. TEST CASE
4. MODELLING
5. NUMERICAL SET UP
6. RESULTS
7. CONCLUSION
HYDRONET 2

Multidisciplinary consortium

Simulation of sand erosion Tip vortex Cavitation Instability of pump-turbine HydroPower design Plant monitoring

To improve the Design, Manufacturing and Operation of HydroPower Plants

Experimental part

Numerical part
Tip vortex in Kaplan turbine

- Promotes cavitation.
- Flow topology of the tip-leakage flow?
- Gap width influence?
- Vortex control?
- Scale up from the model to the prototype?
OBJECTIVES

COUPLING EXPERIMENTAL AND NUMERICAL INVESTIGATION

- To investigate the gap width influence.
- To investigate the flow topology in the gap.
- To investigate the cavitation influence.

\(\text{gap=15 [mm]} \)

\(\text{gap=4 [mm]} \)
TEST CASE : NACA0009

Main characteristics

- Chord length : $c = 0.1$ m.
- Inlet velocity : $U_\infty = 10$ m/s.
- Reynolds number : $Re_c = 10^6$.
- Cross section : $1.5c \times 1.5c$.
- Gap width : $0.1c$.
- Blade incidence : 10°.
- Cavitation number : $\sigma_{expe} = 2.1$, $\sigma_{num} = 1.3$.
Reynolds Averaged Navier-Stokes (RANS) equations

Continuity and momentum equations:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0
\]

\[
\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial \bar{p}}{\partial x_i} + \frac{\partial (\sigma_{ij} + \tau_{ij})}{\partial x_j}
\]

With:

\[
\sigma_{ij} = \rho \nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right);
\]

\[
\tau_{ij} = -\rho u'_i u'_j = \rho \nu_t \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
\]

\(\nu_t \) computed using the \(k - \omega \) SST model.
MODELLING : Cavitation

Homogeneous Relaxation Model (HRM)

Mixture density defined as:

\[\rho = \alpha_L \rho_L + (1 - \alpha_L) \rho_V \]

Transport equation for \(\alpha_L \):

\[\frac{\partial \alpha_L}{\partial t} + u_j \frac{\partial \alpha_L}{\partial x_j} = m_v + m_c \]

With (Kunz’s model [1]):

\[m_v = \frac{\rho}{\rho_L} \frac{C_v}{t_\infty} \frac{\min (p - p_{vap}, 0)}{0.5 \rho_L U_\infty^2} \]

\[m_c = \frac{\rho}{\rho_L} \frac{C_c}{t_\infty} \frac{\alpha_L^2}{\max (p - p_{vap}, 0)} \frac{\max (p - p_{vap}, 0.01 p_{vap})}{\max (p - p_{vap}, 0.01 p_{vap})} \]

NUMERICAL DOMAIN

Computational domain

- Length \(L = 8c : 2c \) upstream and \(5c \) downstream.
- Section : \(1.5c \times 1.5c \).

Structured mesh

- 2 millions of nodes.
- 30 nodes in the gap.

Flow direction

Gap
NUMERICAL SET UP

OpenFOAM 2.1.0 : interPhaseChangeFoam algorithm

Boundary conditions

- No slip wall.
- Inlet : normal velocity $u_\infty = 10$ m/s.
- Outlet : gradient free.
- Pressure reference sets in one cell.

Numerical Schemes

- Time scheme : second order ("backward") with $\Delta t = 10^{-5}$ s.
- Convective scheme : second order based on the Total Variation Diminishing (TVD) approach ("limitedLinear" and "vanLeer").
- Laplacian scheme : second order ("linear corrected").
- Sharp interface is preserved introducing a counter-gradient in the transport equation for α_L.
VORTEX CORE POSITION

without cavitation

<table>
<thead>
<tr>
<th>x/c</th>
<th>y/c (Expe)</th>
<th>y/c (RANS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>1.2</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>1.5</td>
<td>0.30</td>
<td>0.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x/c</th>
<th>z/c (Expe)</th>
<th>z/c (RANS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>1.2</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>1.5</td>
<td>0.16</td>
<td>0.15</td>
</tr>
</tbody>
</table>

More detailed results in:

AXIAL VORTICITY without cavitation

Position $x/c = 1$

Experiment

RANS Computation
Dimensionless streamwise velocity component in the mid-plane

Without cavitation

With cavitation
CAVITATING TIP VORTEX
VORTEX CORE?

\[Q = \frac{1}{2} \left(||\Omega||^2 - ||S||^2 \right) \]
VORTICITY EQUATION

\[
\frac{\partial \vec{\omega}}{\partial t} + (\vec{u} \cdot \nabla)\vec{\omega} = (\vec{\omega} \cdot \nabla)\vec{u} - \vec{\omega} \nabla \cdot \vec{u} + \nu \nabla^2 \vec{\omega} + \nu_t \nabla^2 \vec{\omega} + \frac{1}{\rho^2} \nabla \rho \wedge \nabla p
\]

RHS

Cross plane at \(x/c = 0 \)

Without cavitation

With cavitation
CONCLUSION

- Non-cavitating tip vortex is captured accurately compared to the experiment.
- Vorticity at the vortex core is under-estimated
 - Pressure drop at the vortex core is also under-estimated.
 - Cavitating computations are performed at a lower cavitation number ($\sigma_{num} = 1.3$ instead of $\sigma_{expe} = 2.1$).
- Cavitating tip vortex shows a qualitative agreement with the experiment.
- Vortex core identification depends on the criterion chosen:
 - Maximum of the void fraction.
 - Maximum of the Q-criterion.
- The production of streamwise vorticity is negative in case of cavitation.

A detail analysis is expected in an upcoming paper.
THANK YOU FOR YOUR ATTENTION