Design & performance of a hydraulic micro-turbine with counter-rotating runners

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
“Design & performance of a hydraulic micro-turbine with counter-rotating runners”

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
Introduction

Hydroelectricity in Switzerland

56% of annual electricity production: 36'031 GWh
Small hydro (<10 MW) exploited: 3'400 GWh
Maximal small hydro potential: 2'200 GWh

Source: OFEN, 2015
Picture: www.zoomvertical.com
Introduction

Hydraulic energy of drinking water networks

"Design & performance of a hydraulic micro-turbine with counter-rotating runners"

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
Hydraulic design

Technical specifications

$N^A = 3000 \text{ min}^{-1}$

$N^B = -3000 \text{ min}^{-1}$

$\varnothing 100 \text{ mm}$

$\varnothing 80 \text{ mm}$

$P_h = 2.6 \text{ kW}$

$P_m \geq 2.1 \text{ kW}$

$\eta_h = \frac{P_m}{P_h} \geq 80\%$
Hydraulic design

Runner geometry

Skeleton-line

Thickness distribution

“Design & performance of a hydraulic micro-turbine with counter-rotating runners”

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
Hydraulic design

Design method

• Specific energy

\[E = \frac{p_1 - p_{\bar{I}}}{\rho} + \frac{C_1^2 - C_{\bar{I}}^2}{2} + g(Z_1 - Z_{\bar{I}}) \]

pressure energy \hspace{1cm} potential energy \hspace{1cm} cinematic energy

• Euler equation applied to a given streamline

\[E_t = U_1 C_{u_1} - U_{\bar{I}} C_{u_{\bar{I}}} = \eta_h \cdot E \]
Hydraulic design

Velocity triangles

\[C = \vec{U} + \vec{W} \]

absolute flow velocity \hspace{1cm} \text{peripheral runner velocity} \hspace{1cm} \text{relative flow velocity}

\[U_I^A \quad \beta_I^A \quad W_I^A \]

\[U_I^B \quad \beta_I^A \quad W_I^B \]

\[C_{mI}^A \quad C_{mI}^B \]

\[C_{uI}^A \quad C_{uI}^B \]

“Design & performance of a hydraulic micro-turbine with counter-rotating runners”

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
Hydraulic design

Summary

\[
E = \frac{p_1 - p_I}{\rho} + \frac{C_1^2 - C_I^2}{2} + g(Z_1 - Z_I)
\]

\[
E_t = U_1 C u_I - U_I C u_I
\]
Fluid simulation

Numerical setup

- Finite volume method
- Steady state
- SST turbulence model
Fluid simulation

Meshing

<table>
<thead>
<tr>
<th>Domain</th>
<th>Domain motion</th>
<th>Nodes</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runner 1</td>
<td>Rotating</td>
<td>546'864</td>
<td>1'458'718</td>
</tr>
<tr>
<td>Runner 2</td>
<td>Rotating</td>
<td>571'559</td>
<td>1'491'680</td>
</tr>
<tr>
<td>Stator 1</td>
<td>Stationary</td>
<td>475'084</td>
<td>1'193'490</td>
</tr>
<tr>
<td>Stator 2</td>
<td>Stationary</td>
<td>557'981</td>
<td>1'415'510</td>
</tr>
<tr>
<td>Full domain</td>
<td></td>
<td>2'151'488</td>
<td>5'559'398</td>
</tr>
</tbody>
</table>

Unstructured tetrahedral cells

“Design & performance of a hydraulic micro-turbine with counter-rotating runners”

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
Fluid simulation

Results

<table>
<thead>
<tr>
<th>η_h [%]</th>
<th>Q [l · s$^{-1}$]</th>
<th>P_h [W]</th>
<th>P_m [W]</th>
<th>Δp [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.86</td>
<td>7.0</td>
<td>1'210</td>
<td>953</td>
<td>1.81</td>
</tr>
<tr>
<td>83.08</td>
<td>7.9</td>
<td>2'142</td>
<td>1'779</td>
<td>2.76</td>
</tr>
<tr>
<td>81.29</td>
<td>9.6</td>
<td>4'762</td>
<td>3'871</td>
<td>4.96</td>
</tr>
<tr>
<td>83.14</td>
<td>8.7</td>
<td>3'311</td>
<td>2'753</td>
<td>3.80</td>
</tr>
</tbody>
</table>

| ≥ 80 | 8.7 | $\geq 2'610$ | $\geq 2'090$ | 3.0 |

"Design & performance of a hydraulic micro-turbine with counter-rotating runners"

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
Machining

• Prototyping for experimental tests
• CAM tool path generation
• 5 axis milling

“Design & performance of a hydraulic micro-turbine with counter-rotating runners”
Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
Performance measurements

Hydraulic test rig

- Max. pressure: 16 bar
- Max. discharge: 45 m³·h⁻¹
- Power/pump: 5.5 kW
- Total volume: 5'000 l

“Design & performance of a hydraulic micro-turbine with counter-rotating runners”

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
Performance measurements

Test results

<table>
<thead>
<tr>
<th>(\Delta p) [bar]</th>
<th>(Q) [l\cdot s(^{-1})]</th>
<th>(\alpha) [-]</th>
<th>(N^B) [min(^{-1})]</th>
<th>(\eta_h) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.95</td>
<td>1.0</td>
<td>1010</td>
<td>50</td>
</tr>
<tr>
<td>1.0</td>
<td>5.63</td>
<td>1.0</td>
<td>1493</td>
<td>51.5</td>
</tr>
<tr>
<td>1.3</td>
<td>6.77</td>
<td>1.18</td>
<td>1749</td>
<td>50.5</td>
</tr>
<tr>
<td>2.0</td>
<td>7.90</td>
<td>1.0</td>
<td>2003</td>
<td>52.8</td>
</tr>
<tr>
<td>2.5</td>
<td>9.22</td>
<td>1.0</td>
<td>2499</td>
<td>52.9</td>
</tr>
<tr>
<td>3.0</td>
<td>9.80</td>
<td>1.18</td>
<td>2257</td>
<td>53</td>
</tr>
</tbody>
</table>

\[
\alpha = \frac{N^A}{N^B}
\]

- **Mechanical losses**
- **Blade clearance gap**

“Design & performance of a hydraulic micro-turbine with counter-rotating runners”

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné
Conclusion

• New counter-rotating micro-turbine for drinking water networks has been developed
• Runners have been designed based on a simplified flow model
• Hydraulic efficiency of > 80% has been verified by fluid simulations
• Prototype runners have been machined and tested
• Measured efficiency is lower due to unconsidered mechanical losses
Design & performance of a hydraulic micro-turbine with counter-rotating runners

Daniel Biner | Vlad Hasmatuchi | François Avellan | Cécile Münch-Alligné