
ESPeciaL: An Embedded Systems Programming Language

Christopher Métrailler Pierre-André Mudry
University of Applied Sciences Western Switzerland

HES-SO Valais
Rte du Rawyl 47

1950 Sion, Switzerland
{christopher.metrailler, pierre-andre.mudry}@hevs.ch

Abstract
The advent of off-the-shelf programmable embedded systems
such as Arduino enables people with little programming skills
to interact with the real-world using sensors and actuators. In
this paper, we propose a novel approach aimed at simplifying
the programming of embedded systems based on the dataflow
paradigm. Named ESPeciaL, this programming framework
removes the need of low-level programming in C/C++, as
the application is written by connecting blocks that produce
and consume data. Thus, an embedded application can be
described in terms of ready-to-use blocks that correspond
to the various micro-controller peripherals and to program
function (multiplexers, logic gates, etc.).

The user application itself is written as an embedded Scala
DSL. From that code, the ESPeciaL compiler then generates
the corresponding C++ code which can be tailored – using
different back-ends – to match different embedded systems
or a QEMU-based simulation environment. To demonstrate
the validity of the approach, we present a typical embedded
systems application implemented using ESPeciaL.

Categories and Subject Descriptors B.1.4 [Hardware]: Mi-
croprogram design aids—Languages and compilers, verifica-
tion; C.3 [Computer systems organization]: Special-purpose
and application-based systems—Real-time and embedded
systems; D.1.7 [Software]: Programming Techniques—
Visual programming

Keywords Domain specific languages (DSL), embedded
systems, Scala

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SCALA’15, June 13-14, 2015, Portland, OR, USA.
Copyright © 2015 ACM 978-1-4503-3626-0/15/06. . . $15.00.
http://dx.doi.org/10.1145/

1. Introduction
The advent of easily programmable embedded systems such
as Arduino, MBed or Teensy enables people with little pro-
gramming skills to interact with the real-world using various
sensors and actuators. The simplified programming languages
proposed in those systems tightly follow an imperative ap-
proach in which no operating system is available. For in-
stance, the toolchain for Arduino-compatible systems rely on
the use of a reduced version of the C programming language
where the user describes the application by filling the body
of a function which is repeatedly called by the framework.
In addition to this execution mechanism, this programming
language provides simple to use functions (with no pointers
for instance) for accessing all the peripherals available on the
embedded system.

Largely based on the Processing [10] programming lan-
guage, this approach has the advantage of hiding the complex
details of setting-up the micro-controller, such as configur-
ing the processor clock manager, initialize interrupt vectors,
configure pins, etc.

This model of programming along with the provided pe-
ripherals library considerably simplify the programming of
such systems. However, modeling the activity of a micro-
controller with an infinitely-repeated loop does not com-
pletely capture the reality of embedded systems in which
several hardware functions (such as timers or IO peripherals)
work in parallel.

In this paper we introduce ESPeciaL (Embedded Systems
Programming Language), a prototype embedded systems pro-
gramming language. Implemented using Scala, ESPeciaL is
intended to be a simple to use programming ecosystem in
which the application is written by connecting blocks that pro-
duce and consume data. Thus, an embedded application can
be described in terms of blocks from a library corresponding
to the various micro-controller peripherals and to program
functions (multiplexers, logic gates, etc.). From this descrip-
tion, ESPeciaL can then generate C++ code suitable for stan-
dard embedded compilers as well as simulation code aimed
at a tailored version of QEMU (see http://www.qemu.org).

http://www.qemu.org

This paper is organized as follows: in the next section,
we give an overview of existing research in the domain and
situate the current research. Section 3 will then discuss the
various elements of our programming framework. In section 4
we will demonstrate how our approach can be applied to
standard embedded systems programming problems before
we conclude our paper.

2. Related Work
Block-based visual programming languages such as Scratch
[8] or TurtleArt [12] have been successfully used to teach the
basics of programming. In the domain of embedded systems,
the same idea of building programs by interconnecting blocks
has been applied in several projects such as Bitbloq or
Modkit [9], notably for education (see [1, 5]). One advantage
of these languages is that they present the sequential nature
of the code in a graphical form. However, those languages
do not completely encompass the parallel and asynchronous
execution of the code which is performed by special hardware
functions that are present in the embedded system. Thus, as
embedded code heavily relies on interrupts (for pin inputs,
timers, etc.) or hardware blocks (for representing protocols,
DMA transfers, etc.), using such programming aids in the
context of education present some challenges, as it has been
shown for instance in [5].

Dataflow Programming: dataflow and flow-based program-
ming are two other close approaches to visually describe
programs that have been used to model embedded systems
for education [4, 13]. In both cases, applications are defined
using black-boxes components connected as a graph to ex-
change data and information. In flow-based programming [6],
nodes are constantly waiting for messages and data between
the nodes are exchanged using asynchronous channels.

Dataflow on the contrary relies on a synchronous approach:
this time, the graph is executed in a sequential order and the
output of the node is computed when all the inputs have
received a valid data. The produced result can then “flow” to
the next node.

More complex models such as functional reactive pro-
gramming exist [7], among others to explicitly include the
notion of time. However, the dataflow model is simpler to
implement, notably because of the scheduling of the opera-
tions, yet it still allow to model all the major components of
embedded systems. For this reason it has been chosen as the
execution model of our framework, as we will discuss in the
next section.

3. The ESPeciaL Framework
ESPeciaL is composed of several components (see Fig. 1).
Directly exposed to the end-user is the internal domain
specific language (DSL). This is the language in which the
dataflow graph corresponding to the application is written.

Generally speaking, a DSL extends the host language
(here Scala) by adding new constructs that are specific to

a given domain (in our case, embedded systems with a
dataflow approach). Concretely, this translates in the DSL to
specific types that encompass the requirements of embedded
systems (for instance for bit-based operations) and also to the
capability to connect blocks inputs and outputs together.

A second important feature of ESPeciaL is the compo-
nent library containing ready-to-use blocks to build embed-
ded applications with an high abstraction level. Using the
description given in the DSL for the interconnected blocks
corresponding to an application, a code generator is then
able to generate the corresponding C++ code. This generated
source file leverages a C++ hardware-abstraction layer (HAL)
which enables the code to be compiled and run on different
embedded systems or on a software emulator.

ESPecIaL

HAL / drivers

ARM Cortex
M3 (dev. kit)

Target Emulator

Generated application (C++)

Code generator

Components library

User application
High-level language (DSL)

Backend

Frontend

Automated
generation

Figure 1. ESPeciaL architecture overview

3.1 Internal DSL Implementation
The DSL proposed mainly consists of two main components:

1. A block linking operator, -->, which serves to intercon-
nect blocks outputs to other blocks inputs (available as
class attributes), corresponding to hardware and to soft-
ware behaviors. Block inputs and outputs are typed, an
information which is used by the framework to prevent
faulty connections.

2. New types specific to embedded systems, notably to
support bit based operations, digital and analogue IOs,
etc.

A very simple example application is shown in Listing 1,
in which a pin of the processor is configured as a digital
output to power-on a LED, using a constant block. Another
LED blinks periodically.

val cst = Constant(bool(true))
val led = DigitalOutput(Pin('C', 3)) // GPIO init.
cst.out --> led.in // Connect and power on LED on pin C#12
Timer(500 ms).out --> DigitalOutput(Pin('C', 4)).in // Timer

Listing 1. Basic DSL application code

Several optimizations and checks are performed on the
corresponding code tree. For instance, output ports can only
be connected to input ports of other components. Moreover,

ports types must be compatible, which is achieved thanks to a
specific data type which is transported through the connection.
Connections types are checked when a connection is created
and explicit errors are printed to help the user correct its
code (i.e. for instance if the user tries to connect a boolean
to an int port). In addition to error checking, the DSL also
contains features like anonymous components instantiation,
variadic constructors and implicit conversions which help to
write concise applications in a natural way as depicted in the
example 2, which corresponds to the majority function of
three digital buttons.

val A = IO.btn1.out // Input buttons
val B = IO.btn2.out
val C = IO.btn3.out
val O = IO.led1.in // Output LED
(A & B | B & C | A & C) --> O // Majority function

Listing 2. Majority function

Component Library
ESPeciaL provides a library of ready-to-use blocks, presented
in Fig. 2. Those blocks are grouped into three categories.
The first type of components are target-specific blocks. They
allow to access to micro-controller peripherals, like GPIOs,
analog inputs (ADC), external interrupts or pulse width
modulation (PWM) outputs. The second category model
generic components, like logic gates or mathematical blocks.
They can be used configured to use a generic number of
inputs, a feature used for instance for the multiplexer block.
Finally, the third category regroups components with a fixed
number of IOs, like inverter gates, constant generation blocks
or a PID regulator.

CoreMath

Logic
Board

Or

Not Digital
input

And Analog
input

Pulse
counter

PWM
output

Digital
output

Mux

Constant

Tick
toggle

PID
regulator

Add

Mul

Sub

Div

ComponentsTrigger

Target specific Generic I/O Fixed I/O

Figure 2. The component library

Because the project is still relatively young, only this
limited number of blocks are currently available. However,
the framework can be extended easily and new components
can be added depending on the user needs.

3.2 Code Generation Pipeline
Once written using the DSL, the application block-diagram
is stored in a direct acyclic graph (DAG) and transformed

to a C++ code automatically thanks to the code generation
pipeline presented in Fig. 3.

«generates»

«uses»

«generates»

DOT
Generator

dsl

Shared
Component
Manager

Optimizer ResolverCode
Checker

checker

generator
DOT and
PDF files

C++ code,
ready to be
compiled

User
Application

DSL DOT

Code
Generator

Code
Formatter

AStyle

IN

OUT

Figure 3. Overview of the code generation pipeline

In the application DAG, nodes of the graph are the com-
ponents of the program and each arc represents a directed
connection from an output to an input port of another node.
Each arc is labeled with the data type of the connection (a
signed/unsigned integer or a float value for instance). During
this phase, error detection as well as optimizations are ap-
plied. First, by analyzing the application graph, connections
errors and unconnected ports and components can be detected.
Second, isolated nodes or paths of unused components can
be detected and removed before generating the C++ code of
the application.

From a code emission perspective, each component of
the dataflow is responsible to generate its own C++, which
corresponds to the low-level implementation of the block for
the target. The resulting source file is a sequential program
composed by codes fragments produced by each blocks
which is generated step-by-step by incrementally adding
the code of each block. The aggregation order is given by
computing the topological sort of the DAG, which is done
by the resolver phase of the pipeline. It is worth noting that
to be able to transform the graph into a sequential program,
the graph must be restricted to an acyclic graph because only
this form allows a static scheduling, known at compilation
time [3].

Overall, the generated C++ program is divided into sev-
eral sections (file header, global definitions, functions dec-
larations, main loop, etc.). These sections can be used or
not, depending on the block functionality. Once the program
is generated, it can then be compiled and executed on the
emulator or on the target.

Software Execution Model
The output program is generated specifically for embedded
systems in a “bare metal” configuration, i.e. without the use
of an operating system.

To accommodate this lack of OS, a simple execution
model has been chosen to support a wide range of embed-
ded systems, including those with limited resources. The se-
quential application runs in a single and monolithic “thread”.
The skeleton of the generated code, divided into sections, is

composed of an initialization function which initializes all
program blocks and a main loop that executes the sequential
application, based on the input-process-output model: first all
program inputs are read, then the logic of the application is
computed before output program values are updated. In this
model, all inputs are read at the same time, and at the end
of a cycle, all outputs are updated. In addition to this recur-
ring loop, hardware interrupts are supported (for instance for
buttons or timers). Thanks to that, it is for instance possible
to guarantee timing constraints which would be otherwise
complicated to implement.

This execution model is similar to the Grafcet execution
model in a programmable logic controller [2], in which
a program cycle corresponds to one iteration of the main
loop. The code of each component is executed once, in a
particular order (determined statically), to take into account
the dependencies between them.

3.3 C++ Back-end
Embedded systems exist in many different flavors, ranging
from very powerful 32-bits processors with FPU to 8-bits
processors with no stack. In addition, each processor is
derived into several models containing different kinds of
peripherals. To limit the impact of this variety between those
processors and to support multiple targets, an Hardware
Abstraction layer (HAL) has been developed. This software
layer, implemented in C++, provide a generic way to access
micro-controller inputs, outputs and peripherals (see the
target specific components in Fig. 2).

It standardizes the access and the control to different pe-
ripherals of the targeted micro-controllers. Therefore, the
same application can be executed on different targets without
modifications because all IOs and peripherals are accessed
through this abstraction layer. For instance, GPIO are auto-
matically configured by providing a port and pin number.
After calling the initialization function, values can be read
or written using the corresponding function, without using
low-level code. To provide this level of abstraction and sup-
port multiple targets, a back-end library must be developed
once for each hardware target. The work required to sup-
port a new hardware target is relatively limited, provided that
the hardware can be programmed in C++ and supports inter-
rupts. It mainly consists in providing the required code for the
bare-metal initialization as well as writing wrapper functions
around the peripheral access functions, the rest being take
care of by the HAL. In the current state, two back-ends have
been developed as we will discuss in the next section.

4. Experimental Setup
To demonstrate the validity of our approach, we implemented
several sample applications. In this section, we will present
two of them. The first one was mainly used to verify the basic
functions of the framework. The second example is a standard
regulation application to show the type and the complexity

of programs that can be built with ESPeciaL. In both cases,
the target used for the execution is a STM32F103 ARM 32-
bit Cortex-M3 processor. Compilation has been performed
using the GNU ARM cross-compiler and we used GDB and
OpenOCD to program and debug the code on the target, with
the help of a generic JTAG adapter.

4.1 Digital Logic Application

Figure 4. Digital logic block diagram

The first basic application shown in Fig. 4 demonstrates
the usage of several ESPeciaL blocks to wire a basic digital
function. The code written in the embedded DSL correspond-
ing to this application is as follows:

val not = Not() // Not gate with `uint8` conversion
val mux = Mux2[bool]()
val cst1 = Constant(bool(true)).out

IO.btn1.out --> not.in

not.out --> mux.sel
!cst1 --> mux.in1
cst1 --> mux.in2

mux.out --> IO.led2.in
cst1 --> IO.led1.in

Listing 3. Digital logic sample code

After being processed by ESPeciaL, the DSL code is then
translated to the following C++ code:

while(1) {
// 1) Read inputs
bool in_C0 = in_cmp02.get();

// 2) Loop logic
uint8_t out_cmp01 = !in_C0;
uint8_t sel_cmp03 = out_cmp01;
bool out_cmp03;

if(sel_cmp03 == 0)
out_cmp03 = false;

else
out_cmp03 = true;

// 3) Update outputs
out_cmp05.set(out_cmp03);
out_cmp06.set(true);

}

Listing 4. Partial generated C++ code

4.2 Regulation Application
This demonstration application regulates the rotational speed
of a computer fan. The target speed of the fan can be set by

maxmin

PID

regulator

Constant 0

1

sel

Fan PWM
command

ON/OFF
button

Speed
setpoint

Fan speed
measure UY

R

kp ki kd

PWM

output

Digital

input
Not

Gain
Pulse

counter

Analog

input

Figure 5. Regulation application block diagram

the user using a potentiometer connected to an analog input
pin. A proportional-integral-derivative (PID) controller block,
available in the component library, automatically adjusts the
speed of the fan depending on the user setpoint and the
effective speed of the fan. To achieve this, the speed of the fan
is controlled by the duty-cycle of a pulse-width-modulated
signal. The effective speed of the fan is measured using a
pulse counter block, which captures the external hardware
interrupts generated by the fan itself twice per turn. The
corresponding block diagram is shown in Fig. 5 and the
application code (which has about 20 lines) in Listing 5.

val pid = PID(1.0, 0.5, 0, 50, 4000) // Inputs
val pulse = PulseInputCounter(Pin('B', 9)).out
val measure = IO.adc1.out
val speedGain = SpeedGain(4000.0 * 45.0) // Logic
val mux = Mux2[uint16]()
val not = Not()
val pwm = IO.pwm3 // Output

pulse --> speedGain.in
speedGain.out --> pid.measure // PID input measure
measure --> pid.setpoint // PID setpoint from the potentiometer

Constant(uint16(50)).out --> mux.in1
pid.out --> mux.in2
IO.btn1.out --> not.in // Stop the fan using the button
not.out --> mux.sel

mux.out --> pwm.in // Fan PWM command

Listing 5. Regulation application code

5. Conclusion
ESPeciaL is still in its infancy and is limited to certain appli-
cations because of the DAG-constraints on the code as well
as a basic scheduling based on the IPO model. Despite these
limitations, we demonstrated in this paper that this program-
ming framework could already be used to write regulation
applications for embedded systems running on real hardware.
The programming model – which remains simple in this first
iteration – includes some of the specificities of embedded
systems (such as interrupts) in a transparent manner. Based
on our programming experience with standard embedded
code, this early implementation of ESPeciaL seem to demon-
strate that the dataflow-based DSL description is shorter than
its C++ counterpart. In addition, having the possibility to
describe the application in terms of interconnected blocks
provides a level of abstraction that was very convenient for
developing the presented examples, which is encouraging. In
addition, the presence of a simulator-based output enabled us

to automate the testing of complete regression suites for the
code generator.

In further work we will introduce more complex peripher-
als in the simulator. In addition, we will also add to the frame-
work a multi-tasking OS which will remove the limitations
of the IPO model to capture even more complex application
scenarios. For this future implementation, we will integrate
the lightweight modular staging approach [11] to generate the
code. We will also consider the implementation of a graphical
editor for the dataflow graph which could directly generate
the DSL code.

ESPeciaL is an open-source project available at
https://github.com/hevs-isi/especial-frontend.

References
[1] Martin Grimheden and Martin Törngren. What is embedded

systems and how should it be taught? ACM Transactions on
Embedded Computing Systems, 4(3):633–651, 2005.

[2] Anaïs Guignard and Jean-Marc Faure. Formal models for
conformance test of programmable logic controllers. Journal
Européen des Systèmes Automatisés, 47(4-8):423–446, 2013.

[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data flow programming language LUSTRE. Pro-
ceedings of the IEEE, 79(9):1305–1320, Sep 1991.

[4] David Jeff Jackson and Paul Caspi. Embedded systems
education: future directions, initiatives, and cooperation. ACM
SIGBED Review, 2(4):1–4, 2005.

[5] Peter Jamieson. Arduino for teaching embedded systems. are
computer scientists and engineering educators missing the
boat? Proc. FECS, pages 289–294, 2010.

[6] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar.
Advances in dataflow programming languages. ACM Comput.
Surv., 36(1):1–34, March 2004.

[7] Ingo Maier and Martin Odersky. Deprecating the observer
pattern with Scala.React. Technical report, 2012.

[8] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silver-
man, and Evelyn Eastmond. The scratch programming lan-
guage and environment. ACM Transactions on Computing
Education (TOCE), 10(4):16, 2010.

[9] Amon Millner and Edward Baafi. Modkit: blending and extend-
ing approachable platforms for creating computer programs
and interactive objects. In Proc. of the 10th Intl. Conf. on
Interaction Design and Children, pages 250–253. ACM, 2011.

[10] Casey Reas and Ben Fry. Processing: A Programming Hand-
book for Visual Designers and Artists. The MIT Press, 2014.

[11] Tiark Rompf and Martin Odersky. Lightweight modular
staging: A pragmatic approach to runtime code generation and
compiled DSLs. In Proc. of the 9th Intl. Conf. on Generative
Programming and Component Engineering, pages 127–136,
New York, 2010. ACM.

[12] Claudia Urrea and Walter Bender. Making learning visible.
Mind, Brain, and Education, 6(4):227–241, 2012.

[13] Marilyn Wolf. Computers as components: principles of em-
bedded computing system design. Elsevier, 2012.

https://github.com/hevs-isi/especial-frontend

	Introduction
	Related Work
	The ESPeciaL Framework
	Internal DSL Implementation
	Code Generation Pipeline
	C++ Back-end

	Experimental Setup
	Digital Logic Application
	Regulation Application

	Conclusion

