Real-time Decentralized Voltage Stability Monitoring and Protection against Voltage Collapse

Costas Vournas
National Technical University of Athens
vournas@power.ece.ntua.gr
Outline

- Introduction to Voltage Stability
 - Challenging problem due to nonlinearity and multiple time scales

- Instability Detection
 - Global vs Local

- LIVES method:
 - Local Detection of Global Stability
 - Based on LTCs

- New LIVES Index
 - Based on PMU measurements on a transmission corridor bus

- Protection against collapse
 - Soft (Voltage Control) vs Hard (Load Shedding) measures
What is Voltage Stability?

- Maybe I cannot define stability but I know it when I see it
 - Carson W Taylor, retired engineer of BPA
- Voltage instability stems from the attempt of load dynamics to restore power consumption beyond the capability of the combined transmission and generation system

- Key aspects
 - Maximum Power Transfer basically set by Transmission
 - but generation pattern and excitation limits are important
 - Voltage instability is load driven
 - Dynamic phenomenon that can be studied by steady state (equilibrium) conditions (in the long term)
 - Reactive power has a major influence
 - but at stability limit both active and reactive power are significant
 - Converter connected components are also part of the problem
 - Mostly when current limited
Maximum Power Transfer

- Two bus system - variable load
 - Demand (e.g. admittance)
 - Consumption (power)
- Load power \((P, Q)\) consumed:
 \[
 (V^2)^2 + (2QX - E^2)V^2 + X^2(P^2 + Q^2) = 0
 \]
- Bi-quadratic equation \((R=0)\)
- Maximum when \(\Delta=0\)
- Corresponds to impedance matching (radial system)
 - load impedance \(V/I = \text{line } Z\)
- \(P_{\text{max}}\) depends on \(Q\)
 - or power factor
 - Is not affected by the load demand model!
Impedance matching

- Stability condition for a lossless system-constant power factor load

\[G \sqrt{1 + \alpha^2} < \frac{1}{X} \]

- Assuming constant \(E \)

- What if we monitor at the middle of the line?

Impedance matching does not hold!

- Consider now:

\[Z_1 = jX_2 + \frac{1}{G(1 - j\alpha)} \]

\[|Z_1| > \frac{1}{G \sqrt{1 + \alpha^2}} \geq X > X_1 \]

\[G_1 = \text{Re}\{\frac{\bar{I}_1}{\bar{V}_1}\} \]

\[G_1 = \frac{G}{(1 + \alpha GX_2)^2 + (GX_2)^2} \]

This is increasing with \(G \) up to MPT!

Thus an accurate stability condition is

\[\text{NLI} = \frac{\Delta P}{\Delta G_1} > 0 \]
Load Tap Changers (LTC)

- Discrete device
- Loads behind LTC voltage sensitive
- Load restores through LTC
 - when $r_i^{min} < r_i < r_i^{max}$
- Maximum Power when
 - Secondary voltage maximum
 - Stability condition $\frac{\Delta V_2}{\Delta r} < 0$

$$r_i(kT) = r_i(kT - T) + \Delta r_i^k$$

$$\Delta r_i^k = \begin{cases}
\Delta s & \text{if } V_i > V_i^{max} \\
0 & \text{if } V_i^{min} \leq V_i \leq V_i^{max} \\
-\Delta s & \text{if } V_i < V_i^{min}
\end{cases}$$
Long-term voltage stability

- LTC restoring load from voltage-sensitive to constant power
- Representation in PV plane
 - Maximum power point C
- Network and load characteristics
 - Steady State (L-T)
 - Transient (S-T)
- Point S stable
 - Attracting when disturbed
- Point U unstable
Voltage Stability Monitoring

- Centralized with system-wide phasor information
 - Monitor exact instability conditions
 - Central System Protection Scheme (load shedding)
- With only local LTC measurements
 - Compare secondary regulated voltage at each LTC operation period
 - If voltage does not recover issue alarm
 - Local Identification of Voltage Emergency Situations (LIVES)
- With local phasor measurements and the condition $\Delta P/\Delta G$
 - New LIVES Index (NLI)
- Local Protection possible
Load Shedding Protection Schemes

- Last resort countermeasure, when a critical situation arises
- To be procured, contracted, tested and paid annually
- Manual load shedding not effective
 - imposes heavy responsibility on the operators
 - induces undesired delays
 - difficult to coordinate with other controls
- Undervoltage load shedding requires:
 - Design and tuning for a large number of contingencies
 - Extensive off-line studies
 - Use LIVES or NLI to decide threshold adaptively!
Local Identification of Voltage Emergency Situations (LIVES)

- LOCAL monitoring of GLOBAL voltage instability
 - Indirectly identify weak points of the system
 - Capable for decentralized protection
 - Autonomous system
- Based on monitoring the controlled voltage of LTC during one period of operation
 - Its failure to rise is an imminent instability warning
- Or based on NLI
Instability detection with LTC (LIVES)

- Typical simulation of voltage instability
- Before collapse, LTC-controlled load voltage (and power) reach a maximum
Multi-load systems are not simple! Care needed to define MPT

- Load power space
 - Demand and Consumption
- Typical Instability scenario
- Stress direction (demand)
- Critical Point C
 - Consumption diverges
 - Load not restored in affected area
- Point M
 - Not a Loadability Limit
 - Always before C
 - Good for detection
LIVES Monitoring based on Moving Average

- Sampling period Δt
 \[\overline{V}_i(t_j) = \frac{1}{n_i} \sum_{k=0}^{n_i-1} V_i(t_j - k\Delta t) \]

- Average calculated over n_i samples
- Average updated at each sampling instant $t_j = j\Delta t$
- Effective filtering of noise
 - Including fast (short-term) transients
- Averaging period equal to LTC time delay T_i
 \[n_i = T_i / \Delta t \]
 - Includes only one tap change of LTC i
 - Implicitly measures effect of all other LTCs in affected area
LIVES algorithm

Immediately after each tap change measure ΔV_i^k

$$\bar{V}_i(kT_i) - \bar{V}_i(kT_i - \Delta t) = \frac{1}{n_i} [V_i(kT_i) - V_i(kT_i - T_i)] = \frac{1}{n_i} \Delta V_i^k$$

Increasing moving average after tap change

- Sufficient stability condition

Average before tap change taken as reference

Monitor whether MA increases over a period of LTC operation

- if it increases: **reset** (process repeats after next tap change)
- if MA remains below reference for more than the period: **alarm**
Overview of LIVES Monitoring and Protection Scheme

- Three modules, running at each LTC controller:
 - LIVES-alarm: Detects imminent voltage instability by monitoring the secondary voltage after each LTC operation
 - LIVES-restore: Voltage stability restoration by reverse tap movement (in favor of transmission)
 - LTC-range restore: Restores LTC control if hard tap limits are met (reducing voltage setpoint)

- Direct (firm) load shedding
 - inevitable in the presence of self-restoring loads
LIVES-alarm module

- Monitor secondary voltage sufficient stability condition:
 \[
 \Delta V_i^k = V_i(kT) - V_i[(k - 1)T]
 \]

- Reference Value: The value of MA at the time of tap change
- Monitor of MA over a period of LTC operation
 - If MA remains above reference value, reset (the process is repeated at the next tap change)
 - If MA remains below reference value for slightly less than LTC operation, alarm
LIVES-restore module

- LTC operation reversed after LIVES-alarm in favor of transmission side voltages
- Modified LIVES-alarm module monitors primary voltage
- When the MA remains above a reference value
 - Restore signal is issued and LTC secondary setpoint is lowered to its present value

- Restore equilibrium at the current consumption level
- Indirect (possibly temporary) load reduction
LTC-range restore module

Unblock LTCs

1) Regulated voltage below deadband and LTC at last tap
2) MA taken as reference
3) If MA below reference
 - Reduce 5% distribution voltage setpoint
4) Else if MA above reference
 - continue monitoring
5) Stop when secondary voltage returns to deadband
Case Study

- **LIVES method and NLI**
 - Moving average filtering
 - Remedial actions possible after the alarm
 - Reverse LTC tapping (LIVES restore) or
 - Direct load shedding

- **Application to Nordic Test System (PSDPC TF on Voltage Stability test systems)**
 - Documented in TF report and available online including PSS/E files
• Unstable scenario
 – Operating point A
 – Short circuit at t=50s cleared by tripping line 4032-4044
• QSS (WPSTAB) and Full time simulation (RAMSES-TF report)
• Detailed simulation used to show effect of noisy measurements in instability detection
• QSS used to assess effect of countermeasures
LIVES Alarms

Costas Vournas, Champery, February 9, 2017

<table>
<thead>
<tr>
<th>GENERATOR</th>
<th>WPSTAB (s)</th>
<th>RAMSES (s)</th>
<th>LIVES-ALARM BUS</th>
<th>WPSTAB (s)</th>
<th>RAMSES (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g12</td>
<td>96</td>
<td>95.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g14</td>
<td>113</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g7</td>
<td>115</td>
<td>114.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>125</td>
<td>125.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>127</td>
<td>129.08</td>
</tr>
<tr>
<td>g11</td>
<td>128</td>
<td>128.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>129</td>
<td>129.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>129</td>
<td>131.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>131</td>
<td>131.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>134</td>
<td>145.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>146</td>
<td>113.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>153</td>
<td>-</td>
</tr>
<tr>
<td>g6</td>
<td>155</td>
<td>155.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>156</td>
<td>126.08</td>
</tr>
<tr>
<td>g5</td>
<td>178</td>
<td>178.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g15</td>
<td>178</td>
<td>178.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g8</td>
<td>179</td>
<td>178.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g16</td>
<td>185</td>
<td>185.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>192</td>
<td>164.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>202</td>
<td>187.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td>-</td>
<td>200.30</td>
</tr>
<tr>
<td>VOLTAGE COLLAPSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>202</td>
<td>212.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIVES-alarm & LIVES-restore

<table>
<thead>
<tr>
<th>bus</th>
<th>P_{0i}</th>
<th>Q_{0i}</th>
<th>V_{init}</th>
<th>V_{fin}</th>
<th>ΔP</th>
<th>ΔQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600.00</td>
<td>148.20</td>
<td>0.9988</td>
<td>0.8660</td>
<td>74.49</td>
<td>34.19</td>
</tr>
<tr>
<td>4</td>
<td>840.00</td>
<td>252.00</td>
<td>0.9996</td>
<td>0.9329</td>
<td>47.98</td>
<td>27.69</td>
</tr>
<tr>
<td>43</td>
<td>900.00</td>
<td>254.60</td>
<td>1.0013</td>
<td>0.9004</td>
<td>80.54</td>
<td>43.01</td>
</tr>
<tr>
<td>46</td>
<td>700.00</td>
<td>211.80</td>
<td>0.9990</td>
<td>0.8960</td>
<td>65.87</td>
<td>37.62</td>
</tr>
<tr>
<td>3</td>
<td>260.00</td>
<td>83.80</td>
<td>0.9974</td>
<td>0.9156</td>
<td>19.39</td>
<td>11.94</td>
</tr>
<tr>
<td>2</td>
<td>330.00</td>
<td>71.00</td>
<td>1.0012</td>
<td>0.9559</td>
<td>11.24</td>
<td>4.70</td>
</tr>
</tbody>
</table>

TOTAL (LIVES-RESTORE)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>299.51</td>
<td>159.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bus</th>
<th>P_{0i}</th>
<th>Q_{0i}</th>
<th>V_{init}</th>
<th>V_{fin}</th>
<th>ΔP</th>
<th>ΔQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>720.00</td>
<td>190.40</td>
<td>0.9961</td>
<td>0.9851</td>
<td>3.54</td>
<td>1.86</td>
</tr>
</tbody>
</table>

TOTAL (UNSERVED)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>303.05</td>
<td>161.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- LTC exhaust at bus 5
- Steady state at $t=500s$
- $\Delta P = 299.51 \text{ MW}$,
 $\Delta Q = 159.16 \text{ MVAr}$
LIVES-alarm and Load Shedding

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>OXL</th>
<th>LIVES - ALARM BUS</th>
<th>(V_H) (pu)</th>
<th>LOAD SHEDDING BUS</th>
<th>(\Delta P) (MW)</th>
<th>(\Delta Q) (MVAr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>g12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>g14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>g7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>43</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>43</td>
<td>89.89</td>
<td>25.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>1</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>g11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>1</td>
<td>60.07</td>
<td>14.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>46</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>46</td>
<td>70.07</td>
<td>21.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>STEADY STATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL LOAD SHEDDING</td>
<td>220.03 MW</td>
<td>61.48 MVAr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Direct load shedding of 10% at each LIVES alarm
- No OEL activation of g15, g16, g6
- Steady state at t=160s
- \(\Delta P=220.03\text{MW}, \Delta Q=61.48\text{MVAr} \)
New LIVES Index

- Applied to the boundary buses 4041, 4042
 - End of transmission corridor
 - Feeding Central Area
- Same unstable scenario
- QSS (WPSTAB) and Full time simulation (RAMSES-TF report)
NLI results

- Applied to buses 4041, 4042
 - Bus 4044 becomes internal after disconnection
- Same unstable scenario as before
- Early warning
- 70-71s (QSS)
- 73.94-83.94s (Full time simulation - TF report)

Costas Vournas, Champery, February 9, 2017
NLI results

- Apparent G and P at the bus 4041
- Clear trend (even if marginally so)
- No false alarm in marginally stable scenario
Continuing Research

- Application to historical results
 - Hellenic Interconnected System 2004 blackout
 - Simulation case reconstructed
 - Pilot application of stability monitoring

- Initial results promising
 - Only method so far that can predict voltage collapse
 - Without giving false alarm in marginally stable scenario
Conclusions

- Both LIVES method and NLI issue early alarms to all affected buses
 - No false alarm at marginally stable cases

- The alarms are raised at nominal voltage levels
 - No undervoltage protection possible without stability monitoring

- Results comparable with minimum load shedding method based on global information

- Investigation of diversified load sensitivities to voltage
 - Alarms always early
 - Load shedding varies but always effective to save the system
LIVES/NLI References

