Modelling Alzheimer’s disease in vitro

Laura Suter-Dick

Biotechnology Summerschool, Sion, Sept 2017
Alzheimer’s disease (AD)

Statistics:

- Worldwide, nearly 44 million people have AD or a related dementia
- Alzheimer’s and other dementias are the top cause for disabilities in later life
- The cost of caring for AD-patients in the U.S. is estimated to be $236 billion in 2016
- The global cost of AD and dementia is estimated to be $605 billion, which is equivalent to 1% of the entire world’s gross domestic product
Alzheimer’s disease (AD)

Forms of AD:

- Alzheimer disease (AD): most common form of age-related dementia, progressive memory loss and cognitive impairment

- Familial AD (FAD): Familial, early-onset (<60y.), autosomal dominant forms of AD caused by mutations in \(\beta \)-amyloid precursor protein (APP), presenilin 1 and 2 (PSEN1, PSEN2)

Castellani & Perry, Biochem Pharm Review, 2014
Current treatment for AD

Symptomatic treatment

The U.S. Food and Drug Administration (FDA) has approved two types of medications

1) Cholinesterase inhibitors (Aricept, Exelon, Razadyne): They inhibit the acetylcholinesterase from breaking down acetylcholine, thereby increasing both the level and duration of action of the neurotransmitter acetylcholine

2) Memantine (Namenda): Acts on the glutamatergic system by blocking NMDA receptors. It has been associated with a moderate decrease in clinical deterioration with only a small positive effect on cognition, mood, behavior, etc to treat the cognitive symptoms (memory loss, confusion, and problems with thinking and reasoning) of Alzheimer's disease.

β- and γ- secretase inhibitors

DAPT N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-Butyl Ester
A cell-permeable dipeptide that inhibits γ-secretase and suppresses Aβ production (Aβ total IC₅₀ = 115 nM; Aβ₄₂ IC₅₀ = 200 nM)
Reported to reduce extracellular Aβ plaques and intracellular Aβ accumulation in 3xTgAD transgenic mice

Compound E
A cell permeable, γ-secretase inhibitor XXI

β-secretase inhibitor IV
A cell-permeable isophthalamide compound containing hydroxyethylamine motif that binds to BACE-1 active site and potently blocks its proteolytic activity (IC₅₀ = 15 nM for BACE-1, human and 29 nM for sAPP_NF in HEK293-APP⁴⁶₁₇⁹⁸ cells).

SGSM41
γ-secretase modulator, potently inhibiting the generation of Aβ₄₂ and to a lesser extent Aβ₄₀ while concomitantly increasing Aβ₃₈ Aβ₃

Biologicals

Antibodies against A-beta: solanezumab (a humanised monoclonal antibody that promotes β-amyloid clearance in the brain), failed in recent Phase III clinical trials
Key factors in AD

Musiek & Holzman, Nature Neurosciences, 2015
APP encodes for beta-amyloid precursor protein

Swedish double: K670N, M671L described in Swedish families, 1992
increase Aβ levels early onset AD

London mutation: V717I first described in APP, 1991
English and American families most common worldwide
increase Aβ42, early onset AD

http://www.alzforum.org/databases
PSEN1 encodes presenilin-1, a subunit of the γ-secretase.

S290C mutation
T291-S319 del=ΔE9
english family (Perez-Tur et al., 1995)
abrogates the splice acceptor site
so that exon 9 is spliced out of transcripts
early onset AD
In vivo systems: No mouse models fully replicate the human disease

Table 1 - Neuropathological features of the main transgenic mouse models of Alzheimer disease.

<table>
<thead>
<tr>
<th>Mouse model</th>
<th>Gene (mutation)</th>
<th>Intraneuronal Aβ</th>
<th>Parenchymal Aβ plaques</th>
<th>Hyperphosphorylated Tau</th>
<th>Neurofibrillary tangles</th>
<th>Neuronal loss</th>
<th>Synaptic loss</th>
<th>CAA</th>
<th>Primary reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDAPP</td>
<td>APP (V717F)</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>Games et al. 1995</td>
</tr>
<tr>
<td>Tg2576</td>
<td>APP (K570N/M671L)</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>Hsiao et al. 1995</td>
</tr>
<tr>
<td>TgCRND8</td>
<td>APP (K570N/M671L, V717F)</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>Chishti et al. 2001</td>
</tr>
<tr>
<td>APP/PS1</td>
<td>APP (K570N/M671L), PS1 (M146L)</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Holcomb et al. 1998</td>
</tr>
<tr>
<td>APP23</td>
<td>APP (K570N/M671L)</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Little</td>
<td>Yes</td>
<td>Yes</td>
<td>Sturchler-Pierrat et al. 1997</td>
</tr>
<tr>
<td>Tg-SwDI</td>
<td>APP (E693Q, D694N)</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Davis et al. 2004</td>
</tr>
<tr>
<td>APPDutch</td>
<td>APP (E693Q)</td>
<td>-</td>
<td>Little</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Herzig et al. 2004</td>
</tr>
<tr>
<td>APPDutch/PS1</td>
<td>APP (E693Q), PS1 (G384A)</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>Little</td>
<td>-</td>
<td>-</td>
<td>Herzig et al. 2004</td>
</tr>
<tr>
<td>hAPP-Arc</td>
<td>APP (E693G, K670N/M671L, V717F)</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Little</td>
<td>-</td>
<td>Cheng et al. 2004</td>
</tr>
<tr>
<td>Tg-ArcSwe</td>
<td>APP (E693G, K670N/M671L)</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Lord et al. 2006, Knobloch et al. 2007</td>
</tr>
<tr>
<td>APPArc</td>
<td>APP (E693G)</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Rönnbäck et al. 2011</td>
</tr>
<tr>
<td>TAPP</td>
<td>APP (K570N/M671L), Tau (P301L)</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Lewis et al. 2001</td>
</tr>
<tr>
<td>3xTg-AD</td>
<td>APP (K570N/M671L), Tau (P301L), PS1 (M146V)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>Oddo et al. 2003</td>
</tr>
<tr>
<td>APP/PS1</td>
<td>APP (K570N/M671L, V717F), PS1 (M146L)</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>Wirths et al. 2002</td>
</tr>
<tr>
<td>APP/PS1KI</td>
<td>APP (K570N/M671L, V717F), PS1 (M233T/L235P)</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>Casas et al. 2004</td>
</tr>
<tr>
<td>SxFAD</td>
<td>APP (K570N/M671L, I716V, V717I), PS1 (M146L/L286V)</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>Oakley et al. 2006</td>
</tr>
</tbody>
</table>

CAA = cerebral amyloid angiopathy; Dash (-) = not reported.
In vitro systems

2D cultures: secreted amyloid β diffuses into a large volume of media
3D cultures: accelerate amyloid β deposition by limiting its diffusion and allowing for aggregation
Goal of the project

- The goal of the research was to generate an *in vitro* model to recreate key events involved in the pathophysiology of AD
 - Deposition of A-beta plaques
 - Hyperphosphorilation of Tau and intracellular deposition of pTau tangles
 - Neuroinflammation

Walker and Jcker, 2013
Walker and Jcker, 2013
Swartfager et al., 2014
Differentiation of the human neural progenitors ReN VM cells

2 week-differentiated ReN cells
Lentiviral transduction

- Polycistronic lentiviral constructs

APP-SL: APP with both K670N/M671L (Swedish) and V717I (London) mutations
PSEN-DE9: PSEN1 with deleted exon 9

LETTER

A three-dimensional human neural cell culture model of Alzheimer’s disease

Se Hoon Choi*, Young Hye Kim†, Matthias Heblisch‡, Christopher Silwinski‡, Seungheun Lee†, Carla D’Avanzo†, Hechao Chen†, Basavaraj Hooli‡, Caroline Asselin‡, Jullem Muffat‡, Justin B. Klee‡, Can Zhang†, Brian J. Wäniger*, Michael Peitz‡, Dora M. Kovacs‡, Clifford J. Wolff*, Steven L. Wagner‡, Rudolph E. Tanzi§ & Doo Yeon Kim†
GFP enrichment of the FAD GFP+ cell lines

- **P3** GFP-high: 45.4%
- **P5** GFP-high: 29.1%
- **P7** GFP-high: 29.6%

- **P0** GFP-APP-PSEN high: 52.6%
- **P2** GFP-APP-PSEN high: 21.3%
- **P4** GFP-APP-PSEN high: 24.5%
- **P7** GFP-APP-PSEN high: 28.3%

- **P0** GFP-APP-PSEN low: 27.9%
- **P2** GFP-APP-PSEN low: 22.7%
- **P4** GFP-APP-PSEN low: 9.1%
- **P6** GFP-APP-PSEN low: 8.8%
Expression of the mutated constructs in enriched FAD GFP+ ReN cells

APP primer binding sites

FACS1 | FACS2

APP

Wt+Mut (380 bp)

London mutation:
V717I

APP London primer binding sites

FACS1 | FACS2

London mutated APP

Mut (357 bp)

APP Swedish primer binding sites

FACS1 | FACS2

Swedish mutations:
K670N; M671L

Swedish mutated APP

Mut (217 bp)

PSEN1 primer binding sites

FACS1 | FACS2

PSEN\AE9:
S290C

Presenilin1

Mut (221 bp)

Wt (308 bp)

Expression of the mutated constructs in enriched FAD GFP+ ReN cells
GFP expression of differentiated FAD 3D-cultures

Cell death increased in GAP High expressing cells after 9 weeks => related to FAD-phenotype?
Viability of the 3D cultures

>8 weeks: reduction of axonal connectivity and cell death in FAD-line
Aβ pathology: production of Aβ42 from 6 weeks onwards
Aβ pathology: Aβ deposits in 6 week-old 3D cultures

GFP-APP-PSEN High (6 weeks)

GFP-APP-PSEN Low
12 weeks
pTau pathology: analysis of 3R/4R Tau isoforms by RT-PCR
pTau pathology: IF on 9 and 10-week old 3D cultures
Neuroinflammation: Inclusion of inflammatory cells (THP-1)

THP-1 cells - conditioned medium

2D THP-1 cultures

3D ReN cultures

THP-1 diff. adapt to ReN medium 24h Activation 1μg/mL LPS 24h

6h: THP-1 diff. adapt to ReN medium 24h Untreated control 24h

control: THP-1 diff. adapt to ReN medium 24h

3D matrigel thin layer ReN culture 10 days in differentiation 48h incubation

THP-1 diff. adapted to ReN medium 24h

Activation 1μg/mL LPS 24h

THP-1 diff. adapted to ReN medium 24h

Untreated control 24h

THP-1 diff. adapted to ReN medium 24h

Activation 1μg/mL LPS 6h

3D ReN cultures

24h: ReN cell culture

6h: THP-1 diff. THP-1 diff.

adapt to ReN medium 24h

Untreated control 24h

24h: THP-1 diff. THP-1 diff.

adapt to ReN medium 24h

Untreated control 24h

THP-1 diff. conditioned medium

THP-1 diff. conditioned medium

TNFα

control

control

6h-THP1 conditioned medium

24h-THP1 conditioned medium

6h-THP1 conditioned medium
Neuroinflammation: Inclusion of inflammatory cells (THP-1)

Differentiated THP-1 were printed on 3D Matrigel-ReN printed cells (3-day differentiated) using a RegenHU Bioprinter and imaged after 5 days in culture (A: opening time: 100μsec; B: opening time: 200μsec).
Neuroinflammation: Inclusion of THP-1 leads to neuronal cell vacuolization

Production of TNF-α

Concentration of TNF-α (pg/mL)

Printed cultures

Conclusions

- Cells expressing FAD mutations are functional in terms of neuronal and glial differentiation
- Phenotype
 - Secretion of Ab42 in 2D and 3D cultures
 - Detectable Abeta deposits in 6week and 12week -old 3D cultures
 - Expression of p-Tau in axons, dendrites and cell bodies in 10week-old 3D cultures
 - Increased neuronal death in FAD-high cell line
- Amenable to co-culture with THP-1 and bioprinting
- Inflammatory stimuli (co-culture) cause neuronal damage

Unparalleled opportunity to study the mechanisms underlying AD and the effects of pharmacological interventions
Acknowledgements

HLS, FHNW
Carine Gaiser
Anna Weston, Franziska Lampart
Linda Mauch, Nicole Pina
Felix Schuler, Nicola Vogt

F. Hoffmann-La Roche
Karl-Heinz Baumann, Christoph Patch, Carlo Cusulin, Viviane Anquez
Bernd Bohrmann, Françoise Gerber

FMI
Hubertus Koehler