Motivation
- Pumped-storage power plants: key components of a successful integration of renewable energy sources into electrical grid.
- Hydraulic turbines and pump-turbines:
 - operation in a wide range to offer power regulation flexibility;
 - subject to frequent start-up and/or stand-by operating regimes;
 - facing harsh structural loadings with impact on their lifetime.

Objectives:
- Establishment of a hydrodynamic instability level hill-chart of the machine based on several experimental monitoring parameters;
- Proposal of an alternative less-harmful start-up path and stand-by position with direct effect on the long-term maintenance costs;
- Elaboration of a diagnosis protocol to redraw hydrodynamic instability level hill-charts on different hydropower units, using only a simplified instrumentation set.

Experimental instrumentation architecture
- Case study: a 100 MW Francis turbine prototype, part of one of the four horizontal ternary groups of Grimsel 2 pumped-storage power plant.
- Experimental architecture:

 ![Experimental instrumentation architecture](image)

 - Onboard instrumentation:
 - Stationary frame instrumentation:
 - SCADA system:
 - Dedicated control/monitoring system:

Experimental results
- Conducted tests focused on:
 - Turbine full operating range;
 - Turbine deep part-load;
 - Turbine normal start-up;
 - Modified slower turbine start-up;
 - Pump start-up.

Evidence of harsh turbine start-up and shut down procedures
- Evidence of harmful structural loading of the turbine runner blades during the normal start-up and shut down procedures – signals recorded with the onboard instrumentation.

Non-intrusive instrumentation detection capabilities
- Identification of the harmful structural loading fluctuation of the runner blades at SNL condition using the non-intrusive instruments.

Strain and vibration fluctuations charts
- Fluctuations STD of the runner blades strain and the runner vibrations at SNL, deep part load, and the full normal operating range.

Conclusions & Perspectives
- Two successful experimental measurements campaigns conducted on a 100 MW high-head Francis turbine prototype;
- A 3rd experimental campaign based only on non-instrumentation successfully driven in 2018 on a different machine.
- Still seeking for a feasible simple technical solution to avoid harsh turbine runner blades loading during start-up and shut down;
- Final analysis of results ongoing;
- Diagnosis protocol based on a simplified instrumentation set to identify harsh operating conditions on a different hydropower unit ongoing.

References

Acknowledgements

Supported by:
- Schweizerische Eidgenossenschaft
- Confédération suisse
- Confédération suisse
- Commission for Technology and Innovation-CTI

Partners of the FLEXSTOR - WP6 project