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Abstract—This paper presents a 48-h prediction methodology
for wind power production using a machine learning algorithm
and focuses on the optimization of the input dataset. While power-
grid operators have to keep the production equal to demand, wind
power depends on meteorological conditions. Therefore, the main
issue of power-grid operators is to predict the wind production
as precisely as possible. Our goal is to improve wind prediction
accuracy based on the feedback of the relevant work on the
subject. To this purpose, past power production and Numerical
Weather Predictions (NWP) are used as input of a Gradient
Boosting Tree algorithm. Our approach is to lay emphasis on the
input data in order to extract as much knowledge as possible and
remove as much error as possible from the source. Therefore,
20 days have been removed and additional values have been
calculated to improve the algorithm accuracy. The novelty of
our approach is in the constant retraining of the model to give
the latest information available contrary to most studies, which
use a fixed learning dataset. The idea is to combine the advantage
of regression models and machine learning algorithms, which use
large datasets, in order to learn the relationship between wind
production, NWP, and date and time information. The whole
methodology helps the model anticipate error of wind prediction
and seasonal trends so that the overall prediction accuracy
increases by 17% compared to the persistance approach. Using
9 months of historical values from 2016.12 to 2017.08 and
predicting from 2017.09 to 2018.01, a prediction accuracy of
83% has been achieved; 17% better than the persistence model.
Result analysis show that more improvement can be achieved
with a focus on low wind speed values, an improvement of
weather prediction using real local weather measures and a
reduction of the forecast horizon. The whole prediction process
have been automatized and a visualization web page have been
implemented.

I. INTRODUCTION

Among new sources of renewable energy, wind energy is

the fastest growing installed capacity over recent years and

has become an alternative to fossil fuels in many countries.

Its capacity has increased fivefold since 2007 and reaches

approximately 539 GW, covering for more than 5% of the

world’s energy consumption [1]. Contrary to fossil fuel power

plants or pump-storage hydroelectricity, wind production is

intermittent and only depends of weather conditions. As it

is mandatory for grid operators to keep the production equal

to demand, the high variability of wind speed and direction

can lead to drastic evolution of the energy markets as seen in

June 2013 with a negative price of -200 euros/MWh due to

unexpected renewable production on the European area [2].

Therefore, improving the prediction of wind power plays a

key role in anticipating the unit commitments and dispatching

plans of grid operators. This paper focuses on day-ahead

wind power prediction in order to support the local electricity

distributors to plan the operation of other production plants

and use energy markets to be able to meet the demand.

A wide range of studies focus on wind power prediction us-

ing either complex physical equations or data-driven statistical

approaches and more recently, machine-learning algorithms

that show interesting results. The physical approach uses

the wind’s power curve, speed and direction information to

estimate the future production, whereas data-intensive models

are based on historical production or forecasted values from a

Numerical Weather Prediction model (NWP).The most com-

mon algorithms used in literature are regression methods like

ARIMA time series, Support Vector Regression, K-NN and

Neural networks [3] [4].

The European project on wind prediction ANEMOS, shows

that NWP models outperform time series approaches for more

that 3 to 6 hours prediction ahead [5]. J.P. Heinermann’s

research shows that SVR and neural networks outperform K-

NN method [6]. J. Sousa and R. Bessa reach RMS errors

for both forecasting systems ranged between 10% and 25%
according to the forecasted horizon, with a mean value of 17%
over the three forecast days in terms of RMSE [7]. A few

papers work on ensemble decision trees like L. Fugon [8] and

X. Zhao [9] that obtained better results with a Random Forest

algorithm compared to Neural Networks and SVR. They also

point out ensemble decision trees are easier to use, as only

a few parameters such as the number of trees in the forest

have to be optimized. Gradient boosting ensemble trees are

quite recent machine learning approaches that have proven to

be highly effective with remarkable results for a vast array

of problems so that they have gained popularity by winning

numerous machine-learning competitions [11]. They are often

more accurate than the Random forest algorithm but take

more time to run. Moreover our recent project based on solar

power prediction paper [12], has shown that Gradient Boosting

outperforms Random Forests. To avoid reporting input dataset

errors in the results, preparing the data is also an important

step to gain accuracy from the data source and account for

the first recommendations in the proceeding of 2012 Global

Energy Forecasting Competition [13].

IWBIS 2018 978-1-5386-5525- 2/18/$31.00 c©2018 IEEE

43



Our objective is to work on improving wind power pre-

diction based on the different feedbacks of the latest relevant

work on the subject. For this purpose, a GBT and a deep work

on the input dataset have been explored and show interesting

results. Our idea is to lay emphasis on the data processing step

in order to find the appropriate column manipulation to help

the machine-learning algorithm extract the most information

possible. The novelty of our constantly retraining approach

is the model always using the latest information available

contrary to most studies, which use a fixed learning dataset.

The idea is to combine an advantage of regression models

which use the t-n latest value to predict the t value and the

advantage of machine learning algorithms which use large

datasets to learn the relationship between wind production,

NWP and date and time information. Moreover, Physical

knowledge from wind power is also used to tune the model.
The full methodology has been implemented for the day

ahead prediction needs of the 7MW-wind farm of our local

distributor. For this purpose, a daily updated web page vi-

sualizing the predictions has been implemented. This paper

will describe the dataset set-up, the prediction methodology,

and its results. The different steps of the prediction framework

automation will also be presented.

II. DATASET SETTINGS

A. Wind production data

Fig. 1. Wind turbine location and description

The total wind turbine installed capacity is 18 GW in

2016 in Valais (Wallis in German)[14]. Valais is a canton

located in the south of Switzerland. It is in the Alps, home

to world-renowned alpine resorts and vineyards in the Upper

Rhone Valley. The topography of the area and the geographical

effects make wind variables unstable and difficult to predict.

Therefore, separate predictions for each wind turbine using

the same methodology have been chosen. For the purpose of

the paper, the prediction work presented is based on the wind

turbine “Mont d’Ottan” owned by RhônEol SA and described

in Figure 1.
Our model use both Numerical Weather Predictions (NWP)

and historical production of wind turbines. The production

is collected by smart meters and received from SEIC-Télédis

Group, a power-grid operator in Valais. We receive the real 15-

min measurement of the production though an FTP framework

which is updated several times a day with the latest values.

The data is available since 2013.

B. Weather forecast data

The NWP model is provided by MeteoSwiss, the national

weather forecast company. We receive forecasted wind param-

eters, temperature and humidity with two different models:

Cosmo-1, the more accurate, has a 33-h horizon forecast and

is updated every tree hours with a 2km resolution. Cosmo-

7 is updated every six hours and predicts the weather up

to seven days ahead. The data received in a CSV file are

stored and visualized in the Axibase framework. As a day-

ahead prediction is performed, the latest forecasts of the two

models are combined to cover the full horizon. Our use case

aims to have a prediction around 10 AM using all information

available until h-48, h being the hour to predict. Currently, grid

operators have to send their production plan in the morning.

It is important to note that real weather measures in the area

are not available. Therefore, considering weather information,

only historical weather forecasts are used.

C. Construction of the dataset

Fig. 2. Construction of the dataset

For the purpose of the paper, the data used ranges from

2016.12 to 2018.01 The dataset construction for the prediction

is described in Figure 2.

A python script enables us to gather the NWP data from

Axibase and the wind power data from the FTP client. For

the wind power, a complete production file is collected per

day and joined to the historical production received from the

grid operator. For the NWP data, the first step was to build a

historical dataset that matches our prediction horizon of 48h.

Therefore, the appropriate prediction version of the cosmo-1

and cosmo-2 models have been selected and combined in

one file to have a 48h prediction value for each location. As

weather information is available for multiple sites around the

wind farm, the formatted NWP data have been combined and

sent to FTP using BizTalk framework.
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Fig. 3. Prediction workflow using knime analytics platform

III. PREDICTION METHODOLOGY

Figure III presents the different stages of the prediction

process. The first step is to collect the data from the FTP

server. The data is collected since 2016.12. The data is then

aggregated per hour, cleaned and analyzed in preparation of

the prediction step using the open analytics KNIME 3.5.2

platform. Finally, the 48-h prediction values calculated from

2017.09 are pushed in a SQL database for visualization and

storage. For the purpose of this paper, the predictions from

2017.09 to 2018.01 will be presented.

A. Preparing the dataset

P = cρv3 (1)

Equation 1 describes the wind power production formula:

where P is the turbine’s power output, c is a constant depend-

ing on the feature of the wind turbine, ρ is air density and v is

the wind speed. At a first stage, this physical equation enables

us to choose the key parameters that directly influence the

production: wind speed, air temperature, humidity and density.

The wind direction will influence the wind speed projection

on the turbine’s blades.

Cleaning the dataset means removing errors. Therefore, the

first step is to deal with missing values, which occurs only

for the real measurements of the power produced. Another

source of misunderstanding for the model is the maintenance

days that are not related to the weather conditions. As such,

they have been manually removed. In total, 15 days’ worth of

invalid data have then been removed from the dataset due to

missing values or maintenance (Dataset B).

In addition to Equation (1), the wind turbine will start

and stop given a minimum and a maximum value of wind

that is specific to each turbine. In our case, the production

occurs between 4 to 20 m/s wind speed. However, due to

the high variability of wind speed and direction in the area

of the study, there is no particular constant time window

where the wind is not strong enough to run the turbines.

Moreover, due to errors in wind speed prediction, exploiting

this information would lead to more errors as discussed in the

results section. In order to help the model understand seasonal

trends and anticipate false weather predictions, the average,

maximum and minimum production per hour and per month

are calculated based on the training dataset and used as new

input columns for the training (Dataset C).

At the end of this step, four datasets are created, which

are described in Table I. Dataset A is the raw data without

cleaning, Dataset B includes the cleaning data step. Dataset

C includes the average, maximum and minimum power per

hour per month as new columns for training. The particularity

of Dataset D is to add the power values of the J-2, J-3

and J-4 as new columns to the training (considering J is

the day to predict). Therefore, Dataset D is only relevant

with the retraining approach explained later in this section. A

prediction is calculated based on each dataset and their results

are discussed in the Results section.

TABLE I
TRAINING DATASETS USED FOR PREDICTION

Dataset A Dataset B Dataset C Dataset D
Power Cleaned Power Dataset B Dataset C
NWP NWP Average power Real production
Date and time Date and time per hour per month of the last three

Max power days
per hour per month
Min power
per hour per month

B. Gradient Boosting tree ensembles

For each dataset, a gradient boosting algorithm is used

with the data described in Table 1. The principle of ensemble

prediction is to generate multiple predictions with different

extractions of the dataset. The predictors are then combined

by voting for classification or averaging for regression [3].

The main advantage of averaging the predictions from several

models is that it reduces the variance and prediction error. In

our case, each model will be a decision tree.
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The boosting method focuses on errors in order to improve

the prediction. The weight of the different observations are

updated based on the evaluation of the last prediction in order

to give more weight to the less predictable items.

This enables us to focus on the most difficult observations

to predict for each iteration in order to improve the global

prediction accuracy [14]. The parameters to tune are the

number of trees, maximum level, minimum number of rows

and learning rate. An optimization loop on the Algorithm

number of models and level was run to find the optimal

parameters results. This resulted in optimal values of 100

Models, 4 levels, a learning rate of 0.1 and 9 minimum rows.

C. Retraining

The process described in Figure 3 is run daily around 10

AM so that each day, the training dataset is updated with

the latest real values of wind production. This results in an

increase of the training data with the latest values of wind

power and weather predictions. It means that to predict day J,

the training dataset ranges from 2016.12 to day J-2. Retraining

the algorithm takes more time to run than a fixed training step

but enables us to start the prediction with a relatively small

dataset and improve the prediction as long as more data is

collected. In order to keep a cleaned dataset, power value that

remains at zero for more than five hours when the wind speed

is above 4 m/s are deleted along with the missing values.

Finally, four calculations will be run with the Gradient

Boosting Tree algorithm. One with each dataset A, B and C,

which have the same granularity and ranges from 2016.12 to

2017.08 This enables us to show the impact of the input dataset

in the result. The fourth prediction uses Dataset D and the

retraining methodology. This enables us to show the impact

of retraining on the prediction accuracy. All predictions are

calculated from 2017.09 to 2018.01 with the same parameters

of the Gradient Boosting Tree given in the subsection above.

IV. RESULTS

A. Presentation of the results

The results are compared to the persistence approach, which

is the most frequently used model to benchmark the perfor-

mance of forecasting models. This model assumes the forecast

x time ahead to be equal the real value at t-x. In our case, the

prediction is equal to the real value 48 hours ahead. As a first

stage, the global results are compared to the persistence model

for each dataset presented in Table II. Errors distribution are

presented in table III. Two graphs then compare the prediction

with and without retraining for the best and worst prediction

days. Finally, additional calculations are given to identify

ways to improve the results. The chosen value criteria are the

RMSE divided by 2MW, which is the capacity of the wind

turbine (RMSEp), the standard deviation to estimate the error

distribution and the hourly absolute maximum error (ErrPeak)

as the grid operators sell or buy energy per MW each hour or

quarter hour on energy markets.

The prediction slot is 5 months from September 2017 to

January 2018. Without the retraining step explained in the

section above, the training slot is 9 months from December

2016 to August 2017. With the retraining step, the training

dataset will be from December 2016 to h-48 hours considering

h is the time to predict.

B. Prediction performance description

TABLE II
RESULTS COMPARISON FROM 2017.09 TO 2018.01. GBT (GRADIENT

BOOSTING TREES)

Method RMSEp STDEV (MW) ErrPeak (MW)
Persistance 34% 0.46 2.5

GBT and Dataset A 25% 0.31 2
GBT and Dataset B 24% 0.29 2
GBT and Dataset C 23% 0.28 1.6

GBT and Dataset D 17% 0.16 1.5
with retraining

The persistence model has the maximum error values. The

Gradient Boosting prediction with the basic dataset beats the

persistence by 9%. Cleaning the dataset enables us to gain 1%
in accuracy by removing the small errors or misunderstandings

from the input dataset. Dataset C includes hourly and monthly

averages of production power that enable us to gain 1% more

accuracy. One percent of error saved for each wind turbine

represents 70kWh saved for the wind park.

Results show that retraining with Dataset D helps us gain

6% more accuracy on the 5 months prediction slot. The

STDEV and ErrPeak also decrease significantly with the

retraining step. With nine months’ worth of training data, the

retraining methodology runs in two minutes to predict the next

48 hours, contrary to one minute without retraining.

Finally, an improvement of 8% is achieved with the re-

training methodology compared to a fixed learning step with

Dataset A. 17% errors are saved with retraining comparing to

the persistence model for a 48 hours ahead prediction.

TABLE III
QUARTILE ERRORS DISTRIBUTION FOR DATASET C WITH RETRAINED

PREDICTION

Method Q1 (MW) Q2 (MW) Q3 (MW) Q4 (MW)
GBT and Dataset C 0.1 0.2 0.3 0.1

GBT and Dataset D 0.2 0.3 0.5 1.7
with retraining

Analyzing the error distribution enables us to estimate how

stable or unstable the results are. For the grid stability, two

values are important: energy and power. The energy produced

should be equal to the consumption, and the power demand

lower than the installed capacity. As two separated markets on

which the electricity prices change from an hour to another,

avoiding high peak errors is important. Table III shows that

retraining reduces the error deviation as well as the number

of high errors with 75% errors below 0.3 MW against 75%
below 0.5 MW for Dataset C without retrain.
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Fig. 4. Best prediction results on 2017.12.02 (day1) and 2017.12.03(day2)

C. Results analysis

Figure 4 shows accurate prediction results for two days

in december 2017. PWp retrain is the results of the retrain-

ing methodology, PWp no retrain is the prediction with the

gradient boosting trees and dataset C. The prediction error

for day one is 95%. It was a high production day with a

regular pattern of wind speed increasing around lunchtime.

The retraining prediction outperforms the normal one in the

production peak estimation but also in the low wind speed

values. As the training data volume increases, the model

extracts more information considering the correlation between

wind speed and power production.

Moreover, the mean, minimum and maximum production

values for each month and each hour have been given in

order help the model anticipate the seasonal patterns and

the production boundaries. Day two was a low production

day with an accuracy of 96%. The particularity of retraining

prediction for day two is to anticipate best the variation

of the production regardless to the wind speed prediction,

which is completely underestimated. It shows that the closest

information and the production patterns helps anticipating

wind speed prediction errors.

Figure 5 shows worst prediction days. For those days, the

two predictions show similar results, which can be defined as

a strong delay of the real production. The prediction follows

the wind speed prediction, which is incorrect. Moreover, the

more recent historical data given in addition to the production

pattern is not enough to anticipate wind speed errors. Reducing

Fig. 5. Worst prediction days on 2017.09.01 and 2018.01.11

the time horizon forecast could help correct the first day error

as it could help the model to correct the wind speed prediction

with the closest real conditions. The second day is a quite

low production day which are the most difficult to predict.

An incorrect wind prediction close to zero combined with a

wind gust phenomenon can result in a drastic increase of the

production during a few hours. Wind production turbine occurs

with wind speed from 14 to 72 m/s. Day two’s prediction

shows why implementing this information given the wind

speed prediction can result in huge errors.

D. Additional calculations

As the results show, reducing time horizon and focusing

on small wind speed prediction can help improve power

production. As a result, the accuracy increases by 7% if the

hours for a wind speed below 6 m/s are taken out from

the entire dataset. A persistence model for a 1-hour-ahead

prediction save 5% in the prediction accuracy compared to

to the retrained model, bringing the global RMSEp to 12%.

Therefore, Reducing the granularity of the prediction and

uptdating predictions as often as possible is relevent to increase

accuracy.

V. AUTOMATIZING

The methodology described above have been implemented

for the three wind turbines of the electricity distributor. As

wind variance is localized and the wind turbines are not close

to each other (at least 10 km between each of them), adding

separate predictions with local weather data gives more accu-

racy to the global prediction. Figure 6 shows the automation

IWBIS 2018 978-1-5386-5525- 2/18/$31.00 c©2018 IEEE

47



Fig. 6. Prediction automation process description

process from the collection of data to the visualization web

page.

The NWP data from Axibase and the wind power data from

the FTP server have been gathered and stored on our FTP

virtual machine as explained in section 2. The prediction is

calculated using the methodology described in section 3. The

resulting data is stored in a MySQL database. This database

is part of a three-tier architecture website based on the AMP

(Apache-MySQL-PHP) environment. This website acts as a

portal for the new renewable energy of the canton of Valais

in Switzerland. The resulting data is integrated into this portal

and presented in the form of graphics based on the JavaScript

charting library ’HighCharts’. The whole process is run daily

around 10 AM on KNIME Server, which provides deployment

and management functionalities.

VI. CONCLUSION

The full methodology enables to reach an RMSEp of 17%
for a 48-hour ahead wind power prediction, which is 17%
better than the persistence model. The input dataset aggre-

gations and the retraining steps in our methodology enables

us to help the model anticipate wind error prediction and

seasonal trends so that 6% of errors are saved. Nevertheless, it

is important to note that increasing the size of the dataset can

potentially lead to overfitting. Therefore, the dataset should

stop increasing once its optimal size has been reached. The

dataset will then be moving to take the latest information and

delete the oldest so as to keep the same number of rows.

To continue improving the results, focusing on the small wind

speed values can save 6% errors as the results show. Moreover,

as wind speed error forecasting is also responsible for huge

errors, a great improvement of the weather forecast can be

achieved if the real wind speed and direction measures are

accessible for the location of the wind turbine. Currently,

predictions are available within a 2 to 7km space resolution

and having real local values would help anticipate wind gust

phenomena and improve the weather forecast as shown in our

last publication [15].

Our last recommendation would be to update the prediction

as close as possible to realtime as the subsequent hour predic-

tion can save 5% more errors compared to a 48-hours ahead

prediction.
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